Tl W ()T AR T

' b. . ') ’ LT COMMUNICATION UNIVERSITY OF CHIMA

A

AR E

A 358 -

BRI

Y
AP -
Sx
A Il
5_?:&%/&5

Pid ,/,
i ,/,
"""""" , ‘,*/””’”‘”“”""""""”“
v
I) — II(: . ’,
P) // 7
BYE

=g 4T 1
E(xtz o
) tw
X(Xy A
) a)y(xz .2 1) s
wz(y)

iz

v=1
Z(yt o
z —t
y)-l-a)x(yz_l_l)_
wZV(Xy)_w(
Z x)

eI ER?

AT HRHLEE RS

—y

3D{iL

e

g8

ST B S
3D E FNE (]
i BSOS e

—y

"The Blockhouse" Time Tablet Experience

Trailer
(3:00)

I3i5f : Ryerson Multimedia Research Lab

HTC Vive

335 : Ryerson Multimedia Research Lab

-

4
/:

"
7|
’,
(1
1)
/|
L

s

oS

4l

P1

FH#11

g

~
!
AT

P2

FH#12

$AE—4H3D-2DX [& {P;, p;}

150 &

5%

I

3D% A YR
gﬁ""'—ZE3D-2D5(‘H§Z,‘f—:T\® 3

I5] &

472 —4A3D-2D%¢ R 5 (P;(p))
BRP S

5%

Y4 E—4A3D-2DX R m{P;, p;}
MAEPIIREI = K([R|t]

I5] &

5%

Y4 E—4A3D-2DX R m{P;, p;}
MAEPIIREI = K([R|t]

TR RS

318 g

518 g

Y4 E—4A3D-2DX R m{P;, p;}
MAEPIIREI = K([R|t]

{HITHHA11R 2

>, BEEYIRSMINS

318 g

Y4 E—4A3D-2DX R m{P;, p;}
MAEPIIREI = K([R|t]

{HiTHHAIR A

158, BENASHEHS
FAAL B

ibration) [o] &L

© |
C s
> |
5

£ |
©

S|
1|

VAN

FEAA

(

AXim

AYim
a

|

(

_f/Sx 0 Ox

0 —f/sy, o,

o 0 1
NS3EF%

Mint

|

52 3ERE
Mext

_R'{T Xw

R —RIT Y
T ZW

—R3T/ \ 1

(

AXim

AYim
a

|

(

o f/Sx 0 Ox
0 —f/sy, o,
0 - 0) l
NS HE R
Mint
RBAERE R T3

|

52 3ERE
Mext

_R'{T Xw

R —RIT Y
T ZW

—R3T/ \ 1

AXim — f/5x 0 Ox RiT);W
(a;%n> B 0 —f/sy oy |[R —RT ZW
".' W
(@ 0 0 1 —R3T/ \ 1

e o

B RS 4EHE 5h BB
Mint Mext

g

_f/Sx
0

0

0 Oy
_f/Sy Oy
0 1

)i

—RIT
—RIT
—RIT

)

I1

Mint

o

_f/Sy Oy
0 1

R| — RT]

—RIT
R —RIT
—RIT

— f/sx
0 —f/Sy
0

Mt R| — RT]

(7T10 7T11

1Ty
g
U5V

o)

R

—RIT
—RIT
—RIT

X
HXim My T T3 Ty yw
AYim | =|Ts Te M7 Tg ZW

1

a4 SR IRARM AR RS A

It

It

i X — i XX, = 0 X — i Xy = 0
5 R FE P

i X — i XX, = 0 X — i Xy = 0

A5 Bl FE P
T 0 —Xi,X! e
()i) X'~y XT) <n2>=0
im i3

;X = T Xty = 0 X — W Xyjm =0

A5 AR RE
. xT\ [T
(XT)?T _xmeT> il
0 YimX"/) \ 1,

w?ﬂﬂ@%ﬂm—ﬂﬁmﬁ

i X — i XX, = 0 X — i Xy = 0

LS R FE PE
XI 0 _ximXI \
0 XI _yimXI

LLS]
P : <ﬂ2> =0
Xy 0 —x X% / T3

0 X% _YimX%

NXTXT}-\-{— /\\\

i X — i XX, = 0

X] 0 —xiy X1
0 XI _yimXI

XE 0 _ximX%
0 X% _YimX%

A2N><12

T[%‘X — ng‘x)’im =0

\

/

B Ry FE P

i X — i XX, = 0

X] 0 —xiy X1
0 XI _yimXI

XE 0 _ximX%
0 X% _YimX%

A2N><12

T[%‘X — ng‘x)’im =0

\

/

m
)
M3

X12x1

B Ry FE P

i X — i XX, = 0 X — i Xy = 0
5 BB FE
X] O —ximx'{\
0 XI _yimXI LS
S s T, | =
Xy 0 —x Xn (“3)
0 Xi —ymX}/

Ajrnx12 X12x1

Ax =0

i X — i XX, = 0 X — i Xy = 0
5 BB FE
X] O —ximx'{\
0 XI _yimXI LS
S s T, | =
Xy 0 —x Xn (“3)
0 Xi —ymX}/

Ajrnx12 X12x1

Ax =0

x* = arg min||Ax||? subjectto ||x]| =1
X

Ax =0

x* = arg min||Ax]||? subjectto ||x]| =1
X

s BN Z e iE) R

Ax =0

Xx* = arg min||Ax||? subject
X

to [|x]| =1

s BN Z e iE) R

'ﬁ-ﬁAﬂ'}]SVD, A= UDVT, ﬁg

BEVHE,

Ax =0

Xx* = arg min||Ax||? subject
X

to [|x]| =1

s BN Z e iE) R

'ﬁ-ﬁAﬂ'}]SVD, A= UDVT, ﬁg

g T T1q

BEVHE,

¥}
Itg
ULV,

Ax =0

x* = arg min||Ax]||? subjectto ||x]| =1
X

s BN Z e iE) R

my Ty T3 Ty
I=(T5 Te T7 Tg

g Tqo Tq11 Tq2

OLEEEEALS SIS

— f/sx
0 —f/Sy
0

Mt R| — RT]

(7T10 7T11

1Ty
g
U5V

o)

R

—RIT
—RIT
—RIT

:[ﬁ\—ﬁﬂ({)ﬂ"“”:“

\/itg Tl19 Tlq1q 7T12/

)
ERARA?

I

=]
yI=

n(;)=o
2 R RIRHA?
% BN Tl B

n(;)=o
2 R RIRA?
— ST BN 5 o) B
VREIEYSVD, 1= upyrT, R R VAR IS —5

— f/sx
0 —f/Sy
0

Mt R| — RT]

(7T10 7T11

1Ty
g
U5V

o)

R

—RIT
—RIT
—RIT

—RIT
R —RIT
—RIT

m, T T3
M, R = (ﬂs g Ty)
g Ty0 T11
_ f/Sx 0 Oy
0 —f/sy, o, |R
0 0 1

m, T T3
M, R = <7T5 g Ty)
g Ty0 T11
_ f/Sx 0 Oy
0 —f/sy, o, |R
0 0 1

IN{ET K E?

QR 73 %

(QR Decomposition)

m])E . QRA#

nXxXn

EX: T ERAENLETTEA € RV, BEHQR#
(QR Decomposition) ENX A
A = QR

EX: T ERAENLETTEA € RV, BEHQR#
(QR Decomposition) ENX A

A = QR
15

EX: WTFEEEENXMTEA € RV, ERQRS
(QR Decomposition) ENX A
A = QR

QEARIEXFImER n X nAYIEFERE

EX: WTFEEEENXMTEA € RV, ERQRS
(QR Decomposition) ENX A

A = QR
15
QR EFIEXRFRER n x nBIIEAR B4

REn xniy L =F%EMH

E'=E=E"'

(

aii
azq
as3q

aio
Ao
aso

ai3
a3
ds33

o)

(

aii
azq
as3q

aio
Ao
aso

ai3
a3
ds33

N

ais

ds33

aio
Ao
ds3o

aiq
azq
as3q

|

a1 4q2 Qg3 1 iz 412 Q11
a1 Az A3 1 = |43 A2 Adxq
31 dsz2 G33/ \1 \d33 3z 33

e ¥%

kA

RQ

%E

AT — QT RT

%E

A =RQ
T _
AT = QTRT

AT_
E=Q'R'E

A =RQ
T _
AT = QTRT

AT_
E=Q'R'E

A
AT .
ATE — QTRT
— QTRT
E

QATE
= RTE

A
AT .
ATE — QTRT
— QTRT
E

QATE
= RTE

A =RQ
AT — QTRT
A'E = Q'R'E
QA'E =R'E

EQA'E = ER'E

A =RQ
AT — QTRT
A'E = Q'R'E
QA'E =R'E

EQA'E = ER'E

I

A =RQ
AT = QTRT
ATE = Q'RTE
QATE =R'E
EQA'E = ER'E

ATE = (Q"E)(ERTE)

I

TREISR

ZIR1

HREFEARE

T IR2

iTEARNQRYfiE

iTHERHMQ

m, T T3
M, R = <7T5 g Ty)
g Ty0 T11
_ f/Sx 0 Oy
0 —f/sy, o, |R
0 0 1

IN{ET K E?

m, T T3
M, R = <7T5 g Ty)
g Ty0 T11
_ f/Sx 0 Oy
0 —f/sy, o, |R
0 0 1

DLI

Direct Linear Transform

HEZMTHRIE

EL]REZ P RS

\]

/

AN

[\

|

/

[

¢ 4 I] |

3

O

BAZRAZ BT 32

1330

A Flexible New Technique
for Camera Calibration

Zhengyou Zhang, Senior Member, |IEEE

Abstract—We propose a flexible new technique to easily calibrate a camera. It
only requires the camera to observe a planar pattern shown at a few (at least two)
different orientations. Either the camera or the planar pattern can be freely moved.
The motion need not be known. Radial lens distortion is modeled. The proposed
procedure consists of a closed-form solution, followed by a nonlinear refinement
based on the maximum likelihood criterion. Both computer simulation and real
data have been used to test the proposed technique and very good results have
been obtained. Compared with classical technigues which use expensive
equipment such as two or three orthogenal planes, the proposed technique is easy
to use and flexible. It advances 3D computer vision one more step from laboratory
environments to real world use. The corresponding software is available from the
author's Web page.

Index Terms—Camera calibration, calibration from planes, 2D pattern, flexible
plane-based calibration, absolute conic, projective mapping, lens distortion,
closed-form solution, maximum likelihood estimation, flexible setup.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22,

NO. 11, NOVEMBER 2000

Our current research is focused on a desktop vision system
(DVS) since the potential for using DVSs is large. Cameras are
becoming inexpensive and ubiquitous. A DVS aims at the general
public who are not experts in computer vision. A typical computer
user will perform vision tasks only from time to time, so they will
not be willing to invest money for expensive equipment. Therefore,
flexibility, robustness, and low cost are important. The camera
calibration technique described in this paper was developed with
these considerations in mind.

The proposed technique only requires the camera to observe a
planar pattern shown at a few (at least two) different orientations.
The pattern can be printed on a laser printer and attached to a
“reasonable” planar surface (e.g., a hard book cover). Either the
camera or the planar pattern can be moved by hand. The motion
need not be known. The proposed approach, which uses 2D metric
information, lies between the photogrammetric calibration, which
uses explicit 3D model, and self-calibration, which uses motion
rigidity or equivalently implicit 3D information. Both computer
simulation and real data have been used to test the proposed
technique and very good results have been obtained. Compared
with classical techniques, the proposed technique is considerably

wmm maay £l aaeilal Al

Asmyrmemn mmam s alen A aalilawall Aasn s bbasess layy Taloan Fla A

TPAMI, 2000

%Eﬁ%

et

W2 K, & [R|t;]

JEZetEL

r

ERTIRERE

Y 2D =

L

Z ”pu e 7T(K, D: Ril ti;

me

2
B) |

ERRIMGIEE
Levenberg-Marquardt &%

~

‘,’; o
J

|| fRiRINSIERE

%Ei%

RS IEkF
(K)

([R;|t;])

J

ERBTR (D)
ki k2, p1;.p2...

.

no OpenCV |4.7.0-dev v|

Open Source Computer Vision

Main Page I Related Pages ' Modules | Namespaces v 1 Classes v | Files v | Examples Java documentation Q- Search

OpenCV-Python Tutorials Camera Calibration and 3D Reconstruction

/ /

Camera Calibration

Goal

In this section, we will learn about

« types of distortion caused by cameras
« how to find the intrinsic and extrinsic properties of a camera
« how to undistort images based off these properties

Basics
Some pinhole cameras introduce significant distortion to images. Two major kinds of distortion are radial distortion and tangential distortion.

Radial distortion causes straight lines to appear curved. Radial distortion becomes larger the farther points are from the center of the image. For example, one
image is shown below in which two edges of a chess board are marked with red lines. But, you can see that the border of the chess board is not a straight line
and doesn't match with the red line. All the expected straight lines are bulged out. Visit Distortion (optics) for more details.

image

Python |i]

A — ————— e g L \
F import numpy as np kE&)
import cv2

import glob LY

et . — s i

import 0s

1. Configuration Parameters i
a # Number of mner corners on the chessboard (rows (height), columns (width)) |
Note: This 1s not the number of squares, but the number of intersection f
| points where corners meet. A
J # E.g., for a 9x6 grid of squares, the inner corners are usually (8, 5). 1
k CHECKERBOARD SIZE = (8, 5) |

4

i # Actual physical side length of each square on the chessboard (any unit, here)
(using mm) ﬁ
¢ SQUARE SIZE=125.0 #e.g.,25mm

Image path matching pattern *
IMAGE _PATH PATTERN ="/calib 1mages/* jpg’

—— —— — g ———r——
-

' '.—_-——__-__‘-_‘“_—-—“ﬁ'
EJ # 2. Prepare 3D World Points I

Establish 1deal coordinates for chessboard corners in the world coordinate
system (Z=0).

Format like: (0,0,0), (1,0,0), (2,0,0), (8,5,0)

objp = np.zeros((CHECKERBOARD SIZE[0] *
CHECKERBOARD SIZE[1], 3), np.float32)

Generate grid, using 'ij' indexing to match matrix order (row, col)
grid rows, grid cols = np.meshgrid(

np.arange(0), CHECKERBOARD SIZE[0]),

np.arange(0, CHECKERBOARD SIZE[]]),

L)

indexing="

)

Combine into an (H, W, 2) array
grid = np.stack((grid rows, grid cols), axis=-1)
objp[:, :2] = grid combined.reshape(-1, 2) * SQUARE SIZE

T ri e)

! # 3. Read Images and Detect Corners

|
\f
H
|

images = glob.glob(IMAGE PATH PATTERN)

valid images count =0

.| 1mage size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

Find chessboard corners

ret, corners = cv2.findChessboardCorners(
gray, CHECKERBOARD SIZE,
cv2.CALIB CB ADAPTIVE THRESH +
cv2.CALIB CB NORMALIZE IMAGE +
cv2.CALIB CB FAST CHECK

m.— —— -—v—%[
3. Read Images and Detect Corners |

g images = glob.glob(IMAGE PATH PATTERN)
I

——————

valid_images count = 0 |
image size = None |

| for fname in images: |
| gray = cv2.imread(fname, cv2.IMREAD COLOR) h

if image size 1s None:
' image size = gray.shape[::-1] \

Find chessboard corners]
ret, corners = cv2.findChessboardCorners(
{ gray, CHECKERBOARD_SIZE, *;\
t cv2.CALIB CB ADAPTIVE THRESH + |
{ cv2.CALIB CB NORMALIZE IMAGE +
| cv2.CALIB CB FAST CHECK

¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

| for fname in images:
{ gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

Find chessboard corners

* ret, corners = cv2.findChessboardCorners(

f gray, CHECKERBOARD SIZE,

t cv2.CALIB CB ADAPTIVE THRESH +
{ cv2.CALIB CB NORMALIZE IMAGE +
} cv2.CALIB CB FAST CHECK

¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

Find chessboard corners
ret, corners = cv2.ﬁndChessboardComers(

cv2.CALIB_C lﬁﬁi IE—YM

¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

Find chessboard corners
ret, corners = cv2.findChessboardCorners(
gray, CHECKERBOARD SIZE,

cv2 ALIB-

V2 CALIB CB NORMALIZE IMA(/}}"‘

—— ——— /N

« images = glob.glob(IMAGE PATH PATTERN) i

; valid images count =0
j image size = None

| for fname in images:
| gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
¥ image size = gray.shape[::-1]

} # Find chessboard corners

;, ret, corners = cv2.findChessboardCorners(

f’ gray, CHECKERBOARD SIZE,

i cv2.CALIB CB _ADAPTIVE THRESH +

' if ret == True: !

valid 1mages count += |
objpoints.append(objp)

Sub-pixel

| refinement criteria = (cv2.TERM_CRITERIA EPS +

¥ cv2.TERM CRITERIA MAX ITER, 30, 0.001)

{ corners_subpix =

| cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
{ imgpoints.append(corners_subpix)

b print(f"Processed: {os.path.basename(fname)}")

else:

/ print({"Failed to detect corners: {os.path.basename(fname)}")
|

i o

e NS

4. Execute Camera Calibration
' ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
1'1 objpoints, imgpoints, image size, None, None

)

e e ——

- —

if ret = True:
valid 1mages count += |
objpoints.append(objp)

Sub-pixel
refinement criteria = (cv2. TERM_CRITERIA EPS +
: cv2.TERM CRITERIA MAX ITER, 30, 0.001)
| corners_subpix =
, cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
f imgpoints.append(corners_subpix)
print(f"Processed: {os.path.basename(fname)}")
else:
] print({"Failed to detect corners: {os.path.basename(fname)}")

e

T T

ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints, imgpoints, image size

)

R ————— e e

T T ——— — - — —'---*—“"-—_—-‘-'—-—-—-—_“
ret == :

valid_1mages_count +=
objpoints.append(objp)

~| ! # Sub-pixel |
: refinement criteria = (cv2.TERM_CRITERIA EPS +

' cv2.TERM CRITERIA MAX ITER, 30, 0.001)

r corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

et

i—

EES— S i
- - =

'W._ J imgpoints.append(corners_subpix)
} print({os.path.basename(fname)} ")
print({os.path.basename(fname)}")

ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints, imgpoints, image size

) |

|
1

ilw‘“-—-—m

'.1 | if ret == True: ¢
t valid_images count += | |
objpoints.append(objp)

Sub-pixel |
/ refinement criteria = (cv2.TERM_CRITERIA EPS + £
cv2.TERM CRITERIA MAX ITER, 30, 0.001)

| corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) |
f imgpoints.append(corners_subpix) !
} print(f"Processed: {os.path.basename(fname)}")
else:]
* print(f'Failed to detect corners: {os.path.basename(fname)}") *ﬁ

e

« # 4. Execute Camera Calibration |
! ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(:
objpoints, imgpoints, image size, None, None |

)

e p—— g —
e o .

ret ==
valid_1mages_count +=
objpoints.append(objp)

refinement criteria = (cv2. TERM_CRITERIA EPS +

cv2.TERM CRITERIA MAX ITER) |
corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) {
imgpoints.append(corners_subpix)
print({os.path.basename(fname)} ")
, print({os.path.basename(fname)}") {
:3 i xgcute Camera Calibration

\ \ret rms, 'mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

~~~inte image size, None, None
B RERE R

e e —




.W - —— -——*-————-—-——ﬁ-——-._*\

A

.‘F
!
i1

!

print(f'Failed to detect corners: {os.path.basename(fname)}")

# 4. Exe
{ ret_rms, mtx, dist, rvecs. tvecs = cv2.calibrateCamera(

:E ) C *E*)-“j\-] %%EBE e size, None, None

ret =—

valid_1mages_count +=
objpoints.append(objp)

# Sub-pixel |

refinement criteria = (cv2.TERM_CRITERIA_EPS + £
cv2.TERM CRITERIA MAX ITER ) |

corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) ”

imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")

B SEp——

2 Camera Calibration




R s R e —— w———“ﬁm‘

ret =—

valid 1mages count += J

objpoints.append(objp)

refinement criteria = (cv2. TERM_CRITERIA EPS +

cv2.TERM CRITERIA MAX ITER )
corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners_subpix)
print( {os.path.basename(fname)} ")
print( {os.path.basename(fname)}")

# 4. Execute %ﬁﬁra Calibration
ret_rms, mtx; dist, rvecs, tvecs = cv?2 calihratalfomomq(

) mﬁ';)ﬁz%\&: [kll k2, pll pzr k3]

e —— E— - =
- . S




| SSEESSSa """-—____-_—-—-——'_-""'\
'. ret == : "
! valid images count +=

| objpoints.append(objp)

| # Sub-pixel i
| refinement criteria = (cv2. TERM_CRITERIA EPS + 1
cv2.TERM CRITERIA MAX ITER ) |
corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) '

imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")

!

, print(f'Failed to detect corners: {os.path.basename(fname)}")
':i # 4. Execute Cameration
! ret_rms, mtx, dist,(\rvecsz_/tvecs = cv2.calibrateCamera( “

objpoin None, None

_— S =

Rodrigues|5 &

!
!

)




if ret == True: i
{ valid_1mages_count +=
objpoints.append(objp)

i

:. # Sub-pixel
i‘ refinement criteria = (cv2. TERM_CRITERIA EPS + ‘
cv2. TERM_ CRITERIA MAX ITER, 30, ) "

corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")
else:

f print(f"Failed to detect corners: {os.path.basename(fname);") ;

1
|

¢ # 4. Execute Camera Calibzation
ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( *

I

\

} b : , . . 0 | ,

,[:f; Q) ]pomts 1Imgpotii E!—*zrﬁ] B onec. None

) |




Python |i]
=a%a 5 }




I3i5f: Pepsi Max







ive-

=
(&)
(d})
Q. !
S |
b
Q
o |
—
A0

P 4
»
-
N

%




770TT

. [R| — R

T]('D-_-RT—RT=0

\/itg Tl19 Tlq1q 7T12/



RERE

BisgitniZ

i || P3P DLT EPnP
& (B3%) (BB TR (B¥PnP)

Bl TS T )

s |
.p;=K-[R|t]- Py, 5
- :> S'p [ | ] i |:> I[th]

______________________________

Bames | | [ Bowemmesge | [Levenberg-
—>| | {bafT [Z"Pi—H(Pi,R,t)IIZ Magg""

N ER P . IR

__________________________________________________________________________________________________________________________




0

) OpenCV (542007

Open Source Computer Vision

P

Main Page I Related Pages I Modul ] Nam v ‘ Cl v | Files v 1 Examples ' Java documentation Q- Search

Perspective-n-Point (PnP) pose computation

Pose computation overview

The pose computation problem [148] consists in solving for the rotation and translation that minimizes the reprojection error from 3D-2D point
correspondences.

The solvePnp and related functions estimate the object pose given a set of object points, their corresponding image projections, as well as the camera
intrinsic matrix and the distortion coefficients, see the figure below (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
and the Z-axis forward).

@ @

o) ——

(@)
1) (uu.«"n)'o
A u ®

Camera

coordinate O "/’6’ 2
Ji20e

system ., | _‘;{‘\

- ~—

Points expressed in the world frame X, are projected into the image plane [u, v] using the perspective projection model IT and the camera intrinsic
parameters matrix A (also denoted K in the literature):

camera frame:

- o
v| =AI°T,, Yo
Zy
1
L1} i
- . ™ T2 Tz G| [ Xy
0
. i “ el To1 T2 Toz i ¥,
v[=[0 f ¢]||0 100 y i
1 0 0 1 00 1 of ™ T2 Ts t, Zy

o 0 0 1 1

The estimated pose is thus the rotation ( rvec ) and the translation ( tvec ) vectors that allow transforming a 3D point expressed in the world frame into the




MR ZEIDFE XN A E?



40 3R 302 [ R A7
B S EEEANRXR, RFEIBESH



: % "Ml

¥
| o, SR

iz

+ RS

o
et
as=a




P1

P2




El &1

P1

4114E] S HE2D-2DX R 7

P2




X2 X1
1 1

EalidE %









I1, = K,[R|t]













X2 X1
1 1

A FEFE



E = [t.]R

AR %



- 0 —t3 ty
td=| ts 0 -t
—tz tl 0

A FEFE



- 0 —t3 ty
td=| ts 0 -t
—tz tl O

ARFERE  RXMHRER



o] i« SRR



FHE: SME—ANd x ARG, CAETETE

FFIEEIAL, -, 14,

NfF7EL

E X FEfEU, (%S



I SME—d x dSRMHERE, CAEEERE
BAE{EIA, -, idg, WAFTEESCAEREY, %75

G \




%
T3 %

EN: ST RRIE



%
T3 %

EN: FERERNVIFTERIE
1. BHRFEERRITHME



%
T3 %

EN: FERERNVIFTERIE
1. BHRFEERRITHME
2. BREFEN—1TRINFEFTEE



2.
3.

: FEPERRIFIT LRSS
1 Ei‘ﬁ’&%ﬁﬁiﬁlﬂﬁﬁ TR E

RxE
RxE

Ay —

YR —

TERIMEZT T2
TRIMER—1E NEl A

—17

%]]

T



2.
3.

: FEPERRIFIT LRSS
1 Ei‘ﬁ’&%ﬁﬁiﬁlﬂﬁﬁ TR E

RxE
RxE

Ay —

YR —

TERIMEZT T2
TRIMER—1E NEl A

Ax=Db

—17

%]]

T



%J]
TE#

: FEFERFIT TS
1 E?%%EIEEPW THNE
2. BIEEN—1TERIAETE
3. BEEMNFE—1TRUMER—1E A7

Ax=Db
[A|b]




%
”Ri@%

: FEFERFIT TS
1 E?%%EIEEPW THNE
2. BIEEN—1TERIAETE
3. BEEMNFE—1TRUMER—1E A7

Ax=Db
[A[b]

138 1 5B P




W&
*ﬁ

EX: FEFER¥FITERIE

1. BHREMERRITHINE

2. R —1TRILIEFT E X

3. BHEEMNE—ITRINMER—1E, MRz —f7

Ax=Db

[A[b]
18 5B B
W%ﬁﬁELﬁ%%mﬁT I JT IR 4A AR







- 0 —t3 ty
td=| ts 0 -t
—tz tl O

ARFERE  RXMHRER



E = [t ]R



E = [t ]R
BAE:

0 —t3
[tx] =1 i3 0

—t, 4

ty
0



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

izpa



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

0 1 0
[tx]=/1U<—1 0 O)UT

0 0 O

izpa



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

0 1 0
[tx]=/1U<—1 0 o)uT

20 0 0

izpa



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

0 1 0
[tx]=/1U<—1 0 o)uT

20 0 0

izpa

KA



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

0 1 0
[tx]=/1U<—1 0 o)uT

20 0 0

E=UZU'R

izpa

KA



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

/0 1 0
[t ] =(A] < 1 0 O)UT
\0 0 0

E=UZU'R

AEBRT?

izpa

KA



FEFF

K&

AR ER T

H B

E

P'EP, = 0

HE

Y, HJ

=y

NERT M



E = [t ]R
BAE:

0 —t3 ty
[tx] — t3 0 —t4
—t, t1 0

0 1 0
[tx]=/1U<—1 0 o)uT

20 0 0

E=UZU'R

izpa

KA



E=UZU'R



E=UZU'R
A\ :
E =UxV!



E = UZU'R

RATA: 1F 356 F%
E=0Uzv!




BAE: T ERER
E=0Uzv!

EEBREANR T, ATHRESKSVORNER, &
B IBZHxE BN F 2B PR IE A2 B PEAE SR A




RAE: T EARER
E=0Uzv!

EEBREANR T, ATHRESKSVORNER, &
B IBZHxE BN F 2B PR IE A2 B PEAE SR A

0 1 0|1 0 O
[ZII]=|-1 0 0]0 1 0
0 0 0lo o0 1




RiNA: T IERER
E=0Uzv!

EEBREANR T, ATHRESKSVORNER, &
B IBZHxE BN F 2B PR IE A2 B PEAE SR A

0 1 0|1 0 O
[ZII]=|-1 0 0]0 1 0
0 0 0lo o0 1

55 P R



E =UZU™R

A\ : :IE)L%EB$
E=0Uzv!

LA T, ATIBESESVDNER, &
E IO Z M3 pY N £ 2B PN IE A2 SE PE AR R
0 1 0|1 0 0
[Z|I]=[—1 0 0[0 1 0]
0 0 olo o0 1
EFEEET

1 0 0
0 0 1

0 1 0

[100
0O 0 O

0 -1 O]




E = UZU'R

S 2MEE :IE)L%EB$
E=0Uzv!

EEBREANR T, ATHRESKSVORNER, &
B IBZHxE BN F 2B PR IE A2 B PEAE SR A

0 1 0|1 0 O
[Z|1] = [—1 0 0[O0 1 0]
o 0 olo o0 1
MFHEPET

1 0
0 1

0 1 0

[100
0O 0 O

0 -1 O]

0
0
w



5 P R

WT

—
—

3
=== 2
Teo(®)
o —H O ._nmn.rT
NN ._.m__u._h
o —H O “_MVEA

—
— o o



O 1 0|1 0 O
[Z|I]=[—1 O 00 1 0]
O 0 o010 0 1
WFFEPE T iR
1 0 0|0 —=1 O
[O 1 0|1 O O]
0 0 010 O 1




O 1 0|1 0 O
[Z|I]=[—1 O 00 1 0]
O 0 o010 0 1
WFFEPE T iR
1 0 0|0 —=1 O
[O 1 0|1 O O]
0 0 010 O 1

ZW = diag(1,1,0)
ZW' = —diag(1,1,0)



ZW = diag(1,1,0)
ZWT = —diag(1,1,0)



ZW = diag(1,1,0)
ZWT = —diag(1,1,0)
£ NE = UZUTR



ZW = diag(1,1,0)
ZWT = —diag(1,1,0)
£ \E = UZU'R
E = Udiag(1,1,0) (WTUTR)
G
E = Udiag(1,1,0) (—-WUTR)



ZW = diag(1,1,0)
ZWT = —diag(1,1,0)
f£N\E = UZUTR

e

E = Udiag(1,1,0 TUT

E = Udiag(1,1,0){




ZW = diag(1,1,0)
ZWT = —diag(1,1,0)
f£N\E = UZUTR

e

E = Udiag(1,1,0 TUT

E = Udiag(1,1,0){
B




ZW = diag(1,1,0)
ZWT = —diag(1,1,0)
f£N\E = UZUTR

e

E = Udiag(1,1,0 TUT

E = Udiag(1,1,0){
B

E = Udiag(1,1,0) VT



ZW = diag(1,1,0)
ZWT = — diag(1,1,0)

.

_— I 5B %
o

£ AE = UZUTR
E = U diag(1,1,0)
E = Udiag(1,1,0){-

E = Udiag(1,1,0) V*

XEKRETA?



ZW = diag(1,1,0)
ZWT = — diag(1,1,0)
£ A\E = UZUTR

E=U diag(l,l,OTUT

2 — EXER

E = Udiag(1,1,0 .:
NE

E = Udiag(1,1,0) VT
XEGEMTA?
RIRAEPERE 42, B REHE



E = Udiag(1,1,0) VT

Vst 4pps



E = Udiag(1,1,0) VT
ENZW = diag(1,1,0)

Vst 4pps



E = Udiag(1,1,0) VT
ENZW = diag(1,1,0)
E = UZWVT

Vst 4pps



E = Udiag(1,1,0) VT
ENZW = diag(1,1,0)
E =UZWV!
EANE:
E = [t,]JR = (UZUT)R

Vst 4pps



E = Udiag(1,1,0) VT
ENZW = diag(1,1,0)
E =UZWV!
EANE:
E = [t,]R = (UZUT)R
Xt Eb

Vst 4pps



E = Udiag(1,1,0) VT
ENZW = diag(1,1,0)
E =UZWV!
EANE:
E = [t,]R = (UZUT)R
Xt Eb
R, = UWV!

Vst 4pps



E = Udiag(1,1,0) VT

(AWAVA'Y
E=UZWVT
EANE:
E = [t,]JR = (UZUT)R
Xt EE
R, = UWV!
BAIX B :

ZWT = —diag(1,1,0)

= diag(1,1,0)

Vst 4pps



E = Udiag(1,1,0) VT
NZIW
E=UzZWVT

BHF:

E = [t,]JR = (UZUT)R

XJEb
R, = UWV!

BN F:

ZWT = —diag(1,1,0)

.;:

HERMII T AR

detR =1

= diag(1,1,0)

Vst 4pps



E = Udiag(1,1,0) VT

E=UZWVT?

BHF:

E = [t«]JR = (UZUT)R
X Eb

R; = UwV!

BIMNXEF:

ZWT = —diag(1,1,0)

.;:

FFARM AN T 292R -

detR =1

]

ENZW = diag(1,1,0)

HE3E 46 p



E = Udiag(1,1,0) VT
NZIW
E=UzZWVT

BHF:

E = [t,]R = (UZUT)R

X EE
R, = UWV!

BN F:

ZWT = —diag(1,1,0)

.;:

HERMII T AR

detR =1

R, = UWTVT

= diag(1,1,0)

Vst 4pps



E = Udiag(1,1,0) VT

E=UZWVT?

BHF:

RINXE:
ZWT = —diag(1,1,0)

E = [t«]JR = (UZUT)R

.;:

FFARM I T UK -
detR =1

XJEE

]I

ENZW = diag(1,1,0)

eRe 4 s



[t.] = UZUT

FEas



FEas



[t.] = UZUT

3R
[t ]t=0

t2 [t T = [E

FEas



[t.] = UZUT

3R
[t ]t=0

t2 [t T = [E

tR UM RE—Fu,

FEas



FEas



FEas



t1=u3

tz — _u3

R, = UwV!
R, = UW'VT



t1=u3

R, = UwV!



ZINE

010/ 0,
[Rq|t]

R, = UwV!



ZINE

010/ 0,
[Rq|t]

R, = UwV!



010/ 0,

R, = UwV!



R, = UwV!




g

.

0,

[Rq|t]

R, = UW'VT






R, = UW'VT

010/ 0,




tz — _U3




tz — _U3







t, =u;
t, = —u;
P
IRe
010/ 0,

R, = UwV!
R, = UW'VT



R

i 5F R E

AF

\

EBRENN,

K/ E’dﬂiiﬁ BElE%



R

i 5F R E

AF

o BB E NN,

K/ E’dﬂiiﬁ BElE%

R 2L RAY


















uEXTS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer

'Il'l I COMPUYER BCIEMCH

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer




X; = (x;, i)

I_r:xrs IN COMPUTER SCIENCE
I_'Il'l IM COMPUYTER BCIEMCH

Computer Vision Computer Vision

Algorithms and Applications A'gOrLATE S0 AP PHENEORS

Richard Szeliski

Richard Szeliski
@ Springer

@ Springer




X; = (x3, 1) wl|y, |=H|Y

I_T:xrs IN COMPUTER SCIENCE
ullil IM COMPUYTER BCIEMCH

Computer Vision Computer Vision

Algorithms and Applications A'gOrLATE S0 AP PHENEORS

Richard Szeliski

Richard Szeliski
@ Springer

@ Springer













hiy hiz hyz\ /x;
=| hz1 haz hos (3’1’)
h31 hzz hss 1
It

/hllxi + hiy; + h13\
h31x; + h3yy; + has
hp1%; + hooy; + hos

\h31xi + h3zy; + h33/




/hnxi + hiy; + h13\
h31x; + hsyy; + hss
hp1x; + hyoy; + hos

\h31xi + hsyy; + h33/

% E R R T iEA




/hnxi + hiy; + h13\
h31%; + h3y; + hs3
hy1%; + haoy; + hys

\h31xi + hsyy; + h33/

%E BT KT A

/x1 y; 1 0 0 0 —xx1 —yix1 —Xx3
0 0 0 x1 y1 1 —xyi —-yy1 -1

xy yv 1 0 0 0 —xyxy —xyxy —Xy
0 0 0 xy Yn 1 —xyxy —xyxy —Yn

\

/



/xl y; 1 0 0 0 —xlxé —y1X1  —Xq

0 0 0 x y1 1 —xyy1 —-yiy1 —W1

xy yv 1 0 0 0 —xyxy —xyxy —Xxy
0 0 0 xyv Yvn 1 —xyxy —xyxy —Yn




[

x1 y» 1.0 0 0
0 0 0 x y; 1
xy yv 1 0 0 0
0 0 0 xy yy 1

—xlx{

!/
—X1V1

_xNlev
_XNXIIV

—)’195{ —x{ \
—V1Y1  — V1

—xNlev _lev /
14 4
—XNXN  —YN

= /HBEASREITH



[

X1

0

0

V1

0

0

xy yv 1 0 0 0 —xyxy —xyxy —x;\//

1 0 0 0 —xx; —yixg —xi\
0 x1 Y1 1 —xyy1 —yviy1 -0

14 14 4
0 xy Yy 1 —XNXny —XNXN T YN

B F&/N = sk A it ma s




/x1 y; 1 0 0 0 —xyx; —yixq —x{\
0 0 0 x1 y1 1 —xyyi —-yy1 —v1

xy yv 1 0 0 0 —xyxy —xyxy —x;\//
0 0 0 xyv Yvn 1 —xyxy —xyxy —Yn

AR/ Rk (b1 mhsgy

h* = arg min||Ah||?
h



/x1 y; 1 0 0 0 —xyx; —yixq —x{\
0 0 0 x1 y1 1 —xyyi —-yy1 —v1

xy yv 1 0 0 0 —xyxy —xyxy _xIIV/
0 0 0 xyv Yvn 1 —xyxy —xyxy —Yn

AR/ Rk (b1 mhsgy

h* = arg min||Ah||?
h

A8 AOHB AT




/x1 y; 1 0 0 0 —xyx; —yixq —x{\
0 0 0 x1 y1 1 —xyyi —-yy1 —v1

xy yv 1 0 0 0 —xyxy —xyxy —xl’v/
0 0 0 xy Yv 1 —xyxy —xyxy —Yn

IR AR = sk v ms

h* = arg min||Ah||  subjectto ||h]| = 1
h



[

X1

0

0

xy yv 1 0 0 0 —xyxy —xyxy _xIIV/

yy 1 0 0 0 —xx; —yx —x{\
0 0 x »y 1 —xy1 —-vy1i —Wn

14 14 4
0 0 xy yy 1 —XNXNy TXNXNy YN

IR AR = sk v ms

h* = arg min||Ah||  subjectto ||h]| = 1
h

a—5

SHEARSVD, hBEVAIR.



hll
h21
h31

h12
h22
h32

his
h23
h33

= Mjp¢

11
21
31

12
22
32



(

SR "1 T2
fo1 hay Mo = Mjpc| 721 T22

ha1 hsz has 31 732

R EARM AR R SR



+ decomposeHomographyMat()

int cv::decomposeHomographyMat ( InputArray H,
InputArray K,
OutputArrayOfArrays rotations,
OutputArrayOfArrays translations,
OutputArrayOfArrays normals
)

Python:

cv.decomposeHomographyMat( H, K[, rotations|, translations[, normals]]] ) -> retval, rotations, translations, normals

#include <opencv2/calib3d.hpp>

Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

Parameters
H The input homography matrix between two images.
K The input camera intrinsic matrix.

rotations  Array of rotation matrices.
translations Array of translation matrices.

normals Array of plane normal matrices.

This function extracts relative camera motion between two views of a planar object and returns up to four mathematical solution tuples of rotation,
translation, and plane normal. The decomposition of the homography matrix H is described in detail in [166].

If the homography H, induced by the plane, gives the constraint

x; x;
Si |y | ~H |
1 1

on the source image points p; and the destination image points pﬁ then the tuple of rotations[k] and translations[k] is a change of basis from the source
camera's coordinate system to the destination camera's coordinate system. However, by decomposing H, one can only get the translation normalized by
the (typically unknown) depth of the scene, i.e. its direction but with normalized length.

If point correspondences are available, at least two solutions may further be invalidated, by applying positive depth constraint, i.e. all points must be in front
of the camera.

Examples:
samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp.



garaphy H induced by the plane. The intrinsic came

L The function may return up to four mathematical solution sets.
dher be invalidated if point correspondence




guraphy H induced by the plane. The intrinsic came
L The function may return up to four mathematical solution sets.




ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Deeper understanding of the homography
decomposition for vision-based control

Ezio Malis and Manuel Vargas

N° 6303

Septembre 2007

INRIA, 2007




SLAM

Simultaneous Localization and Mapping

65 AL S il F




SfM vs. SLAM: EnpihE451 5 ANEUSEE

stM (Ex)IRELEM)

SLAM (FIREfISER)

-BEER - SEN S0
a iﬁﬁﬁ"? |
i 2 E3EZ N ol e g
Sl - o s e - -2 5
!m’ 9 appgh RN el " K J e
TFRE IR B =4 % =4 IR/ HIERERS SMN LY BYIES]
Bic B2 =EY (ZRES RN BEAMIT Wt E
D s STRY/ZE AR
B 25 EER B8R EUS5EM
[SfM: BR{#tE)] TP [SLAM: fR3T(FF51)]
[STM: B4/ e E] Qb3 [SLAM: SERY]
[STM: B{RE =4 Bix: [SLAM: #lBBAZSE ] SAnithE]
[SfM: &] SCRY? [SLAM: Z]







Real-Time 6-DOF Monocular Visual SLAM
in a Large-Scale Environment

Hyon Lim, Jongwoo Lim, H. Jin Kim

ICRA 2014 Video

I35 : Hypo Lim et al.







	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95
	幻灯片 96
	幻灯片 97
	幻灯片 98
	幻灯片 99
	幻灯片 100
	幻灯片 101
	幻灯片 102
	幻灯片 103
	幻灯片 104
	幻灯片 105
	幻灯片 106
	幻灯片 107
	幻灯片 108
	幻灯片 109
	幻灯片 110
	幻灯片 111
	幻灯片 112
	幻灯片 113
	幻灯片 114
	幻灯片 115
	幻灯片 116
	幻灯片 117
	幻灯片 118
	幻灯片 119
	幻灯片 120
	幻灯片 121
	幻灯片 122
	幻灯片 123
	幻灯片 124
	幻灯片 125
	幻灯片 126
	幻灯片 127
	幻灯片 128
	幻灯片 129
	幻灯片 130
	幻灯片 131
	幻灯片 132
	幻灯片 133
	幻灯片 134
	幻灯片 135
	幻灯片 136
	幻灯片 137
	幻灯片 138
	幻灯片 139
	幻灯片 140
	幻灯片 141
	幻灯片 142
	幻灯片 143
	幻灯片 144
	幻灯片 145
	幻灯片 146
	幻灯片 147
	幻灯片 148
	幻灯片 149
	幻灯片 150
	幻灯片 151
	幻灯片 152
	幻灯片 153
	幻灯片 154
	幻灯片 155
	幻灯片 156
	幻灯片 157
	幻灯片 158
	幻灯片 159
	幻灯片 160
	幻灯片 161
	幻灯片 162
	幻灯片 163
	幻灯片 164
	幻灯片 165
	幻灯片 166
	幻灯片 167
	幻灯片 168
	幻灯片 169
	幻灯片 170
	幻灯片 171
	幻灯片 172
	幻灯片 173
	幻灯片 174
	幻灯片 175
	幻灯片 176
	幻灯片 177
	幻灯片 178
	幻灯片 179
	幻灯片 180
	幻灯片 181
	幻灯片 182
	幻灯片 183
	幻灯片 184
	幻灯片 185
	幻灯片 186
	幻灯片 187
	幻灯片 188
	幻灯片 189
	幻灯片 190
	幻灯片 191
	幻灯片 192
	幻灯片 193
	幻灯片 194
	幻灯片 195
	幻灯片 196
	幻灯片 197
	幻灯片 198
	幻灯片 199
	幻灯片 200
	幻灯片 201
	幻灯片 202
	幻灯片 203
	幻灯片 204
	幻灯片 205
	幻灯片 206
	幻灯片 207
	幻灯片 208
	幻灯片 209
	幻灯片 210
	幻灯片 211
	幻灯片 212
	幻灯片 213
	幻灯片 214
	幻灯片 215
	幻灯片 216
	幻灯片 217
	幻灯片 218
	幻灯片 219
	幻灯片 220
	幻灯片 221
	幻灯片 222
	幻灯片 223
	幻灯片 224
	幻灯片 225
	幻灯片 226
	幻灯片 227
	幻灯片 228
	幻灯片 229
	幻灯片 230
	幻灯片 231
	幻灯片 232
	幻灯片 233
	幻灯片 234
	幻灯片 235
	幻灯片 236
	幻灯片 237
	幻灯片 238
	幻灯片 239
	幻灯片 240
	幻灯片 241
	幻灯片 242
	幻灯片 243
	幻灯片 244
	幻灯片 245
	幻灯片 246
	幻灯片 247
	幻灯片 248
	幻灯片 249
	幻灯片 250
	幻灯片 251
	幻灯片 252
	幻灯片 253
	幻灯片 254
	幻灯片 255
	幻灯片 256
	幻灯片 257
	幻灯片 258
	幻灯片 259
	幻灯片 260
	幻灯片 261
	幻灯片 262
	幻灯片 263
	幻灯片 264
	幻灯片 265
	幻灯片 266
	幻灯片 267

