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𝐏

𝑧
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𝐩 = Π 𝐏

像平面

𝐕

𝐯

运动场
方程

𝑢 =
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𝑍
𝑥𝑡𝑧 − 𝑡𝑥 + 𝜔𝑥 𝑥𝑦 − 𝜔𝑦 𝑥2 + 1 + 𝜔𝑧 𝑦

𝑣 =
1

𝑍
𝑦𝑡𝑧 − 𝑡𝑦 + 𝜔𝑥 𝑦2 + 1 − 𝜔𝑦 𝑥𝑦 − 𝜔𝑧 𝑥
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动作捕捉



三角测量
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𝐏

𝐩1 𝐩2
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主要步骤



步骤1
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Direct Linear Transform
直接线性变换法

DLT
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import numpy as np

import cv2

import glob

import os

# 1. Configuration Parameters

# Number of inner corners on the chessboard (rows (height), columns (width))

# Note: This is not the number of squares, but the number of intersection 

points where corners meet.

# E.g., for a 9x6 grid of squares, the inner corners are usually (8, 5).

CHECKERBOARD_SIZE = (8, 5)

# Actual physical side length of each square on the chessboard (any unit, here 

using mm)

SQUARE_SIZE = 25.0  # e.g., 25mm

# Image path matching pattern

IMAGE_PATH_PATTERN = './calib_images/*.jpg'





# 2. Prepare 3D World Points

# Establish ideal coordinates for chessboard corners in the world coordinate 

system (Z=0).

# Format like: (0,0,0), (1,0,0), (2,0,0) ...., (8,5,0)

objp = np.zeros((CHECKERBOARD_SIZE[0] * 

CHECKERBOARD_SIZE[1], 3), np.float32)

# Generate grid, using 'ij' indexing to match matrix order (row, col) 

grid_rows, grid_cols = np.meshgrid(

 np.arange(0, CHECKERBOARD_SIZE[0]),

 np.arange(0, CHECKERBOARD_SIZE[1]), 

 indexing='ij’

)

# Combine into an (H, W, 2) array

grid = np.stack((grid_rows, grid_cols), axis=-1)

objp[:, :2] = grid_combined.reshape(-1, 2) * SQUARE_SIZE



# 3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

  image_size = gray.shape[::-1] 

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

  gray, CHECKERBOARD_SIZE,

  cv2.CALIB_CB_ADAPTIVE_THRESH +

  cv2.CALIB_CB_NORMALIZE_IMAGE +

  cv2.CALIB_CB_FAST_CHECK

 )
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images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

  image_size = gray.shape[::-1] 

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

  gray, CHECKERBOARD_SIZE,

  cv2.CALIB_CB_ADAPTIVE_THRESH +

  cv2.CALIB_CB_NORMALIZE_IMAGE +

  cv2.CALIB_CB_FAST_CHECK

 )





# 3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

  image_size = gray.shape[::-1] 

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

  gray, CHECKERBOARD_SIZE,

  cv2.CALIB_CB_ADAPTIVE_THRESH +

  cv2.CALIB_CB_NORMALIZE_IMAGE +

  cv2.CALIB_CB_FAST_CHECK

 )



# 3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

  image_size = gray.shape[::-1] 

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

  gray, CHECKERBOARD_SIZE,

  cv2.CALIB_CB_ADAPTIVE_THRESH +

  cv2.CALIB_CB_NORMALIZE_IMAGE +

  cv2.CALIB_CB_FAST_CHECK

 )



# 3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:
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# 3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:
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 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

  gray, CHECKERBOARD_SIZE,
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  cv2.CALIB_CB_NORMALIZE_IMAGE +

  cv2.CALIB_CB_FAST_CHECK
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if ret == True:

  valid_images_count += 1

  objpoints.append(objp)

  # Sub-pixel

  refinement criteria = (cv2.TERM_CRITERIA_EPS +

   cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

  corners_subpix = 

   cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

  imgpoints.append(corners_subpix)

  print(f"Processed: {os.path.basename(fname)}")

 else:

  print(f"Failed to detect corners: {os.path.basename(fname)}")

# 4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

    objpoints, imgpoints, image_size, None, None

)



if ret == True:
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)



if ret == True:

  valid_images_count += 1

  objpoints.append(objp)

  # Sub-pixel
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   cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

  corners_subpix = 

   cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

  imgpoints.append(corners_subpix)

  print(f"Processed: {os.path.basename(fname)}")

 else:

  print(f"Failed to detect corners: {os.path.basename(fname)}")

# 4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

    objpoints, imgpoints, image_size, None, None

)



Python时间



鸣谢：Pepsi Max
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回顾：线性代数
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