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A Flexible New Technique
for Camera Calibration

Zhengyou Zhang, Senior Member, |IEEE

Abstract—We propose a flexible new technique to easily calibrate a camera. It
only requires the camera to observe a planar pattern shown at a few (at least two)
different orientations. Either the camera or the planar pattern can be freely moved.
The motion need not be known. Radial lens distortion is modeled. The proposed
procedure consists of a closed-form solution, followed by a nonlinear refinement
based on the maximum likelihood criterion. Both computer simulation and real
data have been used to test the proposed technique and very good results have
been obtained. Compared with classical technigues which use expensive
equipment such as two or three orthogenal planes, the proposed technique is easy
to use and flexible. It advances 3D computer vision one more step from laboratory
environments to real world use. The corresponding software is available from the
author's Web page.

Index Terms—Camera calibration, calibration from planes, 2D pattern, flexible
plane-based calibration, absolute conic, projective mapping, lens distortion,
closed-form solution, maximum likelihood estimation, flexible setup.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22,

NO. 11, NOVEMBER 2000

Our current research is focused on a desktop vision system
(DVS) since the potential for using DVSs is large. Cameras are
becoming inexpensive and ubiquitous. A DVS aims at the general
public who are not experts in computer vision. A typical computer
user will perform vision tasks only from time to time, so they will
not be willing to invest money for expensive equipment. Therefore,
flexibility, robustness, and low cost are important. The camera
calibration technique described in this paper was developed with
these considerations in mind.

The proposed technique only requires the camera to observe a
planar pattern shown at a few (at least two) different orientations.
The pattern can be printed on a laser printer and attached to a
“reasonable” planar surface (e.g., a hard book cover). Either the
camera or the planar pattern can be moved by hand. The motion
need not be known. The proposed approach, which uses 2D metric
information, lies between the photogrammetric calibration, which
uses explicit 3D model, and self-calibration, which uses motion
rigidity or equivalently implicit 3D information. Both computer
simulation and real data have been used to test the proposed
technique and very good results have been obtained. Compared
with classical techniques, the proposed technique is considerably
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Open Source Computer Vision
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Camera Calibration

Goal

In this section, we will learn about

« types of distortion caused by cameras
« how to find the intrinsic and extrinsic properties of a camera
« how to undistort images based off these properties

Basics
Some pinhole cameras introduce significant distortion to images. Two major kinds of distortion are radial distortion and tangential distortion.

Radial distortion causes straight lines to appear curved. Radial distortion becomes larger the farther points are from the center of the image. For example, one
image is shown below in which two edges of a chess board are marked with red lines. But, you can see that the border of the chess board is not a straight line
and doesn't match with the red line. All the expected straight lines are bulged out. Visit Distortion (optics) for more details.

image




Python |i]



A — ————— e g L \
F import numpy as np kE& )
import cv2

import glob LY

et . — s i

import 0s

# 1. Configuration Parameters i
a # Number of mner corners on the chessboard (rows (height), columns (width)) |
# Note: This 1s not the number of squares, but the number of intersection f
| points where corners meet. A
J # E.g., for a 9x6 grid of squares, the inner corners are usually (8, 5). 1
k CHECKERBOARD SIZE = (8, 5) |

4

i # Actual physical side length of each square on the chessboard (any unit, here )
( using mm) ﬁ
¢ SQUARE SIZE=125.0 #e.g.,25mm

# Image path matching pattern *
IMAGE _PATH PATTERN ="/calib 1mages/* jpg’

—— —— — g ———r——
-







' '.—_-——__-__‘-_‘“_—-—“ﬁ'
EJ # 2. Prepare 3D World Points I

# Establish 1deal coordinates for chessboard corners in the world coordinate
system (Z=0).

# Format like: (0,0,0), (1,0,0), (2,0,0) ...., (8,5,0)

objp = np.zeros((CHECKERBOARD SIZE[0] *
CHECKERBOARD SIZE[1], 3), np.float32)

# Generate grid, using 'ij' indexing to match matrix order (row, col)
grid rows, grid cols = np.meshgrid(

np.arange(0), CHECKERBOARD SIZE[0]),

np.arange(0, CHECKERBOARD SIZE[]]),

L)

indexing="

)

# Combine into an (H, W, 2) array
grid = np.stack((grid rows, grid cols), axis=-1)
objp[:, :2] = grid combined.reshape(-1, 2) * SQUARE SIZE




T ri e )

! # 3. Read Images and Detect Corners

|
\f
H
|

images = glob.glob(IMAGE PATH PATTERN)

valid images count =0

.| 1mage size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

# Find chessboard corners

ret, corners = cv2.findChessboardCorners(
gray, CHECKERBOARD SIZE,
cv2.CALIB CB ADAPTIVE THRESH +
cv2.CALIB CB NORMALIZE IMAGE +
cv2.CALIB CB FAST CHECK




m.— —— -—v—%[
3. Read Images and Detect Corners |

g images = glob.glob(IMAGE PATH PATTERN)
I

——————

valid_images count = 0 |
image size = None |

| for fname in images: |
| gray = cv2.imread(fname, cv2.IMREAD COLOR) h

if image size 1s None:
' image size = gray.shape[::-1] \

# Find chessboard corners ]
ret, corners = cv2.findChessboardCorners(
{ gray, CHECKERBOARD_SIZE, *;\
t cv2.CALIB CB ADAPTIVE THRESH + |
{ cv2.CALIB CB NORMALIZE IMAGE +
| cv2.CALIB CB FAST CHECK







¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

| for fname in images:
{ gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

# Find chessboard corners

* ret, corners = cv2.findChessboardCorners(

f gray, CHECKERBOARD SIZE,

t cv2.CALIB CB ADAPTIVE THRESH +
{ cv2.CALIB CB NORMALIZE IMAGE +
} cv2.CALIB CB FAST CHECK




¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

# Find chessboard corners
ret, corners = cv2.ﬁndChessboardComers(

cv2.CALIB_C lﬁﬁi IE—YM




¢ 1images = glob.glob(IMAGE PATH PATTERN)

valid images count =0
image size = None

for fname 1n 1mages:
gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
image size = gray.shape[::-1]

# Find chessboard corners
ret, corners = cv2.findChessboardCorners(
gray, CHECKERBOARD SIZE,

cv2 ALIB-

V2 CALIB CB NORMALIZE IMA(/}}"‘

—— ——— /N




« images = glob.glob(IMAGE PATH PATTERN) i

; valid images count =0
j image size = None

| for fname in images:
| gray = cv2.imread(fname, cv2.IMREAD COLOR)

if image size 1s None:
¥ image size = gray.shape[::-1]

} # Find chessboard corners

;, ret, corners = cv2.findChessboardCorners(

f’ gray, CHECKERBOARD SIZE,

i cv2.CALIB CB _ADAPTIVE THRESH +




' if ret == True: !

valid 1mages count += |
objpoints.append(objp)

# Sub-pixel

| refinement criteria = (cv2.TERM_CRITERIA EPS +

¥ cv2.TERM CRITERIA MAX ITER, 30, 0.001)

{ corners_subpix =

| cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
{ imgpoints.append(corners_subpix)

b print(f"Processed: {os.path.basename(fname)}")

else:

/ print({"Failed to detect corners: {os.path.basename(fname)}")
|

i o

e NS

# 4. Execute Camera Calibration
' ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
1'1 objpoints, imgpoints, image size, None, None

)

e e ——

- —




if ret = True:
valid 1mages count += |
objpoints.append(objp)

# Sub-pixel
refinement criteria = (cv2. TERM_CRITERIA EPS +
: cv2.TERM CRITERIA MAX ITER, 30, 0.001)
| corners_subpix =
, cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
f imgpoints.append(corners_subpix)
print(f"Processed: {os.path.basename(fname)}")
else:
] print({"Failed to detect corners: {os.path.basename(fname)}")

e

T T

ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints, imgpoints, image size

)

R  ————— e e




T T ——— — - — —'---*—“"-—_—-‘-'—-—-—-—_“
ret == :

valid_1mages_count +=
objpoints.append(objp)

~| ! # Sub-pixel |
: refinement criteria = (cv2.TERM_CRITERIA EPS +

' cv2.TERM CRITERIA MAX ITER, 30, 0.001)

r corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

et

i—

EES— S i
- - =

'W._ J imgpoints.append(corners_subpix)
} print( {os.path.basename(fname)} ")
print( {os.path.basename(fname)}")

ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints, imgpoints, image size

) |

|
1



ilw‘“-—-—m

'.1 | if ret == True: ¢
t valid_images count += | |
objpoints.append(objp)

# Sub-pixel |
/ refinement criteria = (cv2.TERM_CRITERIA EPS + £
cv2.TERM CRITERIA MAX ITER, 30, 0.001)

| corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) |
f imgpoints.append(corners_subpix) !
} print(f"Processed: {os.path.basename(fname)}")
else: ]
* print(f'Failed to detect corners: {os.path.basename(fname)}") *ﬁ

e

« # 4. Execute Camera Calibration |
! ret rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( :
objpoints, imgpoints, image size, None, None |

)

e p—— g —
e o .




ret ==
valid_1mages_count +=
objpoints.append(objp)

refinement criteria = (cv2. TERM_CRITERIA EPS +

cv2.TERM CRITERIA MAX ITER ) |
corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) {
imgpoints.append(corners_subpix)
print( {os.path.basename(fname)} ")
, print( {os.path.basename(fname)}") {
:3 i xgcute Camera Calibration

\ \ret rms, 'mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

~~~inte image size, None, None
B RERE R

e e —




.W - —— -——*-————-—-——ﬁ-——-._*\

A

.‘F
!
i1

!

print(f'Failed to detect corners: {os.path.basename(fname)}")

# 4. Exe
{ ret_rms, mtx, dist, rvecs. tvecs = cv2.calibrateCamera(

:E ) C *E*)-“j\-] %%EBE e size, None, None

ret =—

valid_1mages_count +=
objpoints.append(objp)

# Sub-pixel |

refinement criteria = (cv2.TERM_CRITERIA_EPS + £
cv2.TERM CRITERIA MAX ITER ) |

corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) ”

imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")

B SEp——

2 Camera Calibration




R s R e —— w———“ﬁm‘

ret =—

valid 1mages count += J

objpoints.append(objp)

refinement criteria = (cv2. TERM_CRITERIA EPS +

cv2.TERM CRITERIA MAX ITER )
corners_subpix =

cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners_subpix)
print( {os.path.basename(fname)} ")
print( {os.path.basename(fname)}")

# 4. Execute %ﬁﬁra Calibration
ret_rms, mtx; dist, rvecs, tvecs = cv?2 calihratalfomomq(

) mﬁ';)ﬁz%\&: [kll k2, pll pzr k3]

e —— E— - =
- . S




| SSEESSSa """-—____-_—-—-——'_-""'\
'. ret == : "
! valid images count +=

| objpoints.append(objp)

| # Sub-pixel i
| refinement criteria = (cv2. TERM_CRITERIA EPS + 1
cv2.TERM CRITERIA MAX ITER ) |
corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) '

imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")

!

, print(f'Failed to detect corners: {os.path.basename(fname)}")
':i # 4. Execute Cameration
! ret_rms, mtx, dist,(\rvecsz_/tvecs = cv2.calibrateCamera( “

objpoin None, None

_— S =

Rodrigues|5 &

!
!

)




if ret == True: i
{ valid_1mages_count +=
objpoints.append(objp)

i

:. # Sub-pixel
i‘ refinement criteria = (cv2. TERM_CRITERIA EPS + ‘
cv2. TERM_ CRITERIA MAX ITER, 30, ) "

corners_subpix = |
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners_subpix)
print(f'Processed: {os.path.basename(fname)}")
else:

f print(f"Failed to detect corners: {os.path.basename(fname);") ;

1
|

¢ # 4. Execute Camera Calibzation
ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( *

I

\

} b : , . . 0 | ,

,[:f; Q) ]pomts 1Imgpotii E!—*zrﬁ] B onec. None

) |
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Perspective-n-Point (PnP) pose computation

Pose computation overview

The pose computation problem [148] consists in solving for the rotation and translation that minimizes the reprojection error from 3D-2D point
correspondences.

The solvePnp and related functions estimate the object pose given a set of object points, their corresponding image projections, as well as the camera
intrinsic matrix and the distortion coefficients, see the figure below (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
and the Z-axis forward).

@ @

o) ——

(@)
1) (uu.«"n)'o
A u ®

Camera

coordinate O "/’6’ 2
Ji20e

system ., | _‘;{‘\

- ~—

Points expressed in the world frame X, are projected into the image plane [u, v] using the perspective projection model IT and the camera intrinsic
parameters matrix A (also denoted K in the literature):

camera frame:
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The estimated pose is thus the rotation ( rvec ) and the translation ( tvec ) vectors that allow transforming a 3D point expressed in the world frame into the
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+ decomposeHomographyMat()

int cv::decomposeHomographyMat ( InputArray H,
InputArray K,
OutputArrayOfArrays rotations,
OutputArrayOfArrays translations,
OutputArrayOfArrays normals
)

Python:

cv.decomposeHomographyMat( H, K[, rotations|, translations[, normals]]] ) -> retval, rotations, translations, normals

#include <opencv2/calib3d.hpp>

Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

Parameters
H The input homography matrix between two images.
K The input camera intrinsic matrix.

rotations  Array of rotation matrices.
translations Array of translation matrices.

normals Array of plane normal matrices.

This function extracts relative camera motion between two views of a planar object and returns up to four mathematical solution tuples of rotation,
translation, and plane normal. The decomposition of the homography matrix H is described in detail in [166].

If the homography H, induced by the plane, gives the constraint

x; x;
Si |y | ~H |
1 1

on the source image points p; and the destination image points pﬁ then the tuple of rotations[k] and translations[k] is a change of basis from the source
camera's coordinate system to the destination camera's coordinate system. However, by decomposing H, one can only get the translation normalized by
the (typically unknown) depth of the scene, i.e. its direction but with normalized length.

If point correspondences are available, at least two solutions may further be invalidated, by applying positive depth constraint, i.e. all points must be in front
of the camera.

Examples:
samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp.
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L The function may return up to four mathematical solution sets.
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SLAM

Simultaneous Localization and Mapping
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Real-Time 6-DOF Monocular Visual SLAM
in a Large-Scale Environment

Hyon Lim, Jongwoo Lim, H. Jin Kim

ICRA 2014 Video
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