
计算机视觉

姿态估计

本节主题：
相机标定

本节主题：
相机标定
姿态估计

𝐏

𝑧

𝑦

𝐩 = Π 𝐏

像平面

𝐕

𝐯

运动场
方程

𝑢 =
1

𝑍
𝑥𝑡𝑧 − 𝑡𝑥 + 𝜔𝑥 𝑥𝑦 − 𝜔𝑦 𝑥2 + 1 + 𝜔𝑧 𝑦

𝑣 =
1

𝑍
𝑦𝑡𝑧 − 𝑡𝑦 + 𝜔𝑥 𝑦2 + 1 − 𝜔𝑦 𝑥𝑦 − 𝜔𝑧 𝑥

如何估计相机的姿态？

如何估计相机的姿态？

如何估计相机的姿态？

鸣谢：Ryerson Multimedia Research Lab

HTC Vive

HTC灯塔

CAVE

鸣谢：Ryerson Multimedia Research Lab

动作捕捉

三角测量

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

相机1 相机2

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

和相机模型Π = 𝐊 𝐑|𝐭

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

和相机模型Π = 𝐊 𝐑|𝐭

估计相机模型参数

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

和相机模型Π = 𝐊 𝐑|𝐭

估计相机模型参数，即相机内参和外参

给定一组3D-2D对应点 𝐏𝑖 , 𝐩𝑖

和相机模型Π = 𝐊 𝐑|𝐭

估计相机模型参数，即相机内参和外参

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐑, 𝐓

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐑, 𝐓

𝑥im
𝑦im

𝑝𝑖

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐑, 𝐓

𝑥im
𝑦im

𝑝𝑖

𝛼𝑥𝑖𝑚

𝛼𝑦𝑖𝑚

𝛼
=

− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

外参矩阵
𝐌ext

内参矩阵
𝐌int

𝛼𝑥𝑖𝑚

𝛼𝑦𝑖𝑚

𝛼
=

− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

外参矩阵
𝐌ext

内参矩阵
𝐌int

𝛼𝑥𝑖𝑚

𝛼𝑦𝑖𝑚

𝛼
=

− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

外参矩阵
𝐌ext

内参矩阵
𝐌int

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝛑1
T

𝛑2
T

𝛑3
T

𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1
改写

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝛑1
T

𝛑2
T

𝛑3
T

𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1
改写

展开

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝛑1
T

𝛑2
T

𝛑3
T

𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1
改写

展开

𝑥im =
𝛑1

T𝐗

𝛑3
T𝐗

𝑦im =
𝛑2

T𝐗

𝛑3
T𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝛑1
T

𝛑2
T

𝛑3
T

𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1
改写

展开

𝑥im =
𝛑1

T𝐗

𝛑3
T𝐗

𝑦im =
𝛑2

T𝐗

𝛑3
T𝐗

改写

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝛑1
T

𝛑2
T

𝛑3
T

𝐗

𝛼𝑥im

𝛼𝑦im

𝛼
=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝑋w

𝑌w

𝑍w

1
改写

展开

𝑥im =
𝛑1

T𝐗

𝛑3
T𝐗

𝑦im =
𝛑2

T𝐗

𝛑3
T𝐗

改写

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗T

𝟎

𝟎
𝐗T

−𝑥im𝐗T

−𝑦im𝐗T

𝛑1

𝛑2

𝛑3

= 𝟎

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗T

𝟎

𝟎
𝐗T

−𝑥im𝐗T

−𝑦im𝐗T

𝛑1

𝛑2

𝛑3

= 𝟎

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗1
T 𝟎 −𝑥im𝐗1

T

𝟎 𝐗1
T −𝑦im𝐗1

T

⋮ ⋮ ⋮
𝐗𝑁

T 𝟎 −𝑥im𝐗𝑁
T

𝟎 𝐗𝑁
T −𝑦im𝐗𝑁

T

𝛑1

𝛑2

𝛑3

= 𝟎

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗1
T 𝟎 −𝑥im𝐗1

T

𝟎 𝐗1
T −𝑦im𝐗1

T

⋮ ⋮ ⋮
𝐗𝑁

T 𝟎 −𝑥im𝐗𝑁
T

𝟎 𝐗𝑁
T −𝑦im𝐗𝑁

T

𝛑1

𝛑2

𝛑3

= 𝟎

𝐀2𝑁×12

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗1
T 𝟎 −𝑥im𝐗1

T

𝟎 𝐗1
T −𝑦im𝐗1

T

⋮ ⋮ ⋮
𝐗𝑁

T 𝟎 −𝑥im𝐗𝑁
T

𝟎 𝐗𝑁
T −𝑦im𝐗𝑁

T

𝛑1

𝛑2

𝛑3

= 𝟎

𝐀2𝑁×12 𝐱12×1

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗1
T 𝟎 −𝑥im𝐗1

T

𝟎 𝐗1
T −𝑦im𝐗1

T

⋮ ⋮ ⋮
𝐗𝑁

T 𝟎 −𝑥im𝐗𝑁
T

𝟎 𝐗𝑁
T −𝑦im𝐗𝑁

T

𝛑1

𝛑2

𝛑3

= 𝟎

𝐀2𝑁×12 𝐱12×1

𝐀𝐱 = 𝟎

𝛑1
T𝐗 − 𝛑3

T𝐗𝑥im = 0 𝛑2
T𝐗 − 𝛑3

T𝐗𝑦im = 0

改写成矩阵

𝐗1
T 𝟎 −𝑥im𝐗1

T

𝟎 𝐗1
T −𝑦im𝐗1

T

⋮ ⋮ ⋮
𝐗𝑁

T 𝟎 −𝑥im𝐗𝑁
T

𝟎 𝐗𝑁
T −𝑦im𝐗𝑁

T

𝛑1

𝛑2

𝛑3

= 𝟎

𝐀2𝑁×12 𝐱12×1

𝐀𝐱 = 𝟎

𝐱∗ = arg min
𝐱

𝐀𝐱 2 subject to 𝐱 = 1

𝐀𝐱 = 𝟎

𝐱∗ = arg min
𝐱

𝐀𝐱 2 subject to 𝐱 = 1

𝐀𝐱 = 𝟎

𝐱∗ = arg min
𝐱

𝐀𝐱 2 subject to 𝐱 = 1

𝐀𝐱 = 𝟎

𝐱∗ = arg min
𝐱

𝐀𝐱 2 subject to 𝐱 = 1

𝚷 =

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝐀𝐱 = 𝟎

𝐱∗ = arg min
𝐱

𝐀𝐱 2 subject to 𝐱 = 1

𝚷 =

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝚷
𝐓
1

= 𝟎

𝚷
𝐓
1

= 𝟎

齐次最小二乘问题

𝚷
𝐓
1

= 𝟎

齐次最小二乘问题

𝚷
𝐓
1

= 𝟎

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int𝐑| − 𝐌int𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

QR分解
(QR Decomposition)

回顾：QR分解

A

𝑛 × 𝑛

R

𝑛 × 𝑛

A =

𝑛 × 𝑛𝑛 × 𝑛

Q

定义：对于任意给定的实数方阵𝐀 ∈ ℝ𝑛×𝑛，它的QR分解
（QR Decomposition）定义为

𝐀 = 𝐐𝐑

定义：对于任意给定的实数方阵𝐀 ∈ ℝ𝑛×𝑛，它的QR分解
（QR Decomposition）定义为

𝐀 = 𝐐𝐑
使得

定义：对于任意给定的实数方阵𝐀 ∈ ℝ𝑛×𝑛，它的QR分解
（QR Decomposition）定义为

𝐀 = 𝐐𝐑
使得

𝐐是具有正交列向量的 𝑛 × 𝑛的正交矩阵

定义：对于任意给定的实数方阵𝐀 ∈ ℝ𝑛×𝑛，它的QR分解
（QR Decomposition）定义为

𝐀 = 𝐐𝐑
使得

𝐐是具有正交列向量的 𝑛 × 𝑛的正交矩阵

𝐑是𝑛 × 𝑛的上三角矩阵

𝐸 =
 1
 ⋰
1

𝐄−1 = 𝐄 = 𝐄T

 1
 1
1

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

=

𝑎31 𝑎32 𝑎33

𝑎21 𝑎22 𝑎23

𝑎11 𝑎12 𝑎13

 1
 1
1

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

=

𝑎31 𝑎32 𝑎33

𝑎21 𝑎22 𝑎23

𝑎11 𝑎12 𝑎13

 1
 1
1

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

=

𝑎31 𝑎32 𝑎33

𝑎21 𝑎22 𝑎23

𝑎11 𝑎12 𝑎13

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 1
 1
1

=

𝑎13 𝑎12 𝑎11

𝑎23 𝑎22 𝑎21

𝑎33 𝑎32 𝑎31

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 1
 1
1

=

𝑎13 𝑎12 𝑎11

𝑎23 𝑎22 𝑎21

𝑎33 𝑎32 𝑎31

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 1
 1
1

=

𝑎13 𝑎12 𝑎11

𝑎23 𝑎22 𝑎21

𝑎33 𝑎32 𝑎31

𝐀 = 𝐑𝐐

QRA =

𝐀 = 𝐑𝐐

转置

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

𝐐T 𝐑T=𝐀T

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

𝐑T 𝐄𝐐T=𝐀T 𝐄

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐐𝐀T𝐄 = 𝐑T𝐄

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐐𝐀T𝐄 = 𝐑T𝐄

上下反转

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐐𝐀T𝐄 = 𝐑T𝐄

上下反转

𝐄𝐐𝐀T𝐄 = 𝐄𝐑T𝐄

𝐄𝐑T 𝐄𝐀T 𝐄𝐄𝐐 =

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐐𝐀T𝐄 = 𝐑T𝐄

上下反转

𝐄𝐐𝐀T𝐄 = 𝐄𝐑T𝐄

整理

𝐀 = 𝐑𝐐

转置

𝐀T = 𝐐T𝐑T

左右反转

𝐀T𝐄 = 𝐐T𝐑T𝐄

整理

𝐐𝐀T𝐄 = 𝐑T𝐄

上下反转

𝐄𝐐𝐀T𝐄 = 𝐄𝐑T𝐄

整理

𝐀T𝐄 = 𝐐T𝐄 𝐄𝐑T𝐄

𝐄𝐑T 𝐄

𝑛 × 𝑛

=

𝑛 × 𝑛𝑛 × 𝑛

𝐀T 𝐄 𝐄𝐐T

3
主要步骤

步骤1
转置并左右反转

෩𝐀 = 𝐀T𝐄

步骤2
计算෩𝐀的QR分解

෩𝐀 = ෩𝐐෩𝐑

步骤3
计算𝐑和𝐐

𝐑 = 𝐄෩𝐑T𝐄

𝐐 = 𝐄෩𝐐T

回顾：QR分解

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

𝐌int𝐑 =

𝜋1 𝜋2 𝜋3

𝜋5 𝜋6 𝜋7

𝜋9 𝜋10 𝜋11

=
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

Direct Linear Transform
直接线性变换法

DLT

TPAMI, 2000

Python时间

import numpy as np

import cv2

import glob

import os

1. Configuration Parameters

Number of inner corners on the chessboard (rows (height), columns (width))

Note: This is not the number of squares, but the number of intersection

points where corners meet.

E.g., for a 9x6 grid of squares, the inner corners are usually (8, 5).

CHECKERBOARD_SIZE = (8, 5)

Actual physical side length of each square on the chessboard (any unit, here

using mm)

SQUARE_SIZE = 25.0 # e.g., 25mm

Image path matching pattern

IMAGE_PATH_PATTERN = './calib_images/*.jpg'

2. Prepare 3D World Points

Establish ideal coordinates for chessboard corners in the world coordinate

system (Z=0).

Format like: (0,0,0), (1,0,0), (2,0,0), (8,5,0)

objp = np.zeros((CHECKERBOARD_SIZE[0] *

CHECKERBOARD_SIZE[1], 3), np.float32)

Generate grid, using 'ij' indexing to match matrix order (row, col)

grid_rows, grid_cols = np.meshgrid(

 np.arange(0, CHECKERBOARD_SIZE[0]),

 np.arange(0, CHECKERBOARD_SIZE[1]),

 indexing='ij’

)

Combine into an (H, W, 2) array

grid = np.stack((grid_rows, grid_cols), axis=-1)

objp[:, :2] = grid_combined.reshape(-1, 2) * SQUARE_SIZE

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

3. Read Images and Detect Corners

images = glob.glob(IMAGE_PATH_PATTERN)

valid_images_count = 0

image_size = None

for fname in images:

 gray = cv2.imread(fname, cv2.IMREAD_COLOR)

 if image_size is None:

 image_size = gray.shape[::-1]

 # Find chessboard corners

 ret, corners = cv2.findChessboardCorners(

 gray, CHECKERBOARD_SIZE,

 cv2.CALIB_CB_ADAPTIVE_THRESH +

 cv2.CALIB_CB_NORMALIZE_IMAGE +

 cv2.CALIB_CB_FAST_CHECK

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

if ret == True:

 valid_images_count += 1

 objpoints.append(objp)

 # Sub-pixel

 refinement criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

 corners_subpix =

 cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 imgpoints.append(corners_subpix)

 print(f"Processed: {os.path.basename(fname)}")

 else:

 print(f"Failed to detect corners: {os.path.basename(fname)}")

4. Execute Camera Calibration

ret_rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(

 objpoints, imgpoints, image_size, None, None

)

Python时间

鸣谢：Pepsi Max

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐑, 𝐓

𝑥im
𝑦im

𝑝𝑖

𝐏𝑐

𝑋𝑐

𝑌𝑐

𝑍𝑐

𝑍𝑤𝑋𝑤

𝐏𝑤

𝑌𝑤

𝐑, 𝐓

𝑥im
𝑦im

𝑝𝑖

𝚷 =
− Τ𝑓 𝑠𝑥 0 𝑜𝑥

0 − Τ𝑓 𝑠𝑦 𝑜𝑦

0 0 1

𝐑

−𝐑1
T𝐓

−𝐑2
T𝐓

−𝐑3
T𝐓

= 𝐌int 𝐑| − 𝐑𝐓

=

𝜋1

𝜋5

𝜋9

𝜋2

𝜋6

𝜋10

𝜋3

𝜋7

𝜋11

𝜋4

𝜋8

𝜋12

如果没有3D空间对应点呢？

如果没有3D空间对应点呢？

三角测量

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

基础矩阵

𝑥2

𝑦2

1
𝐅

𝑥1

𝑦1

1
= 0

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝚷1 = 𝐊1 𝐈|𝟎

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝚷1 = 𝐊1 𝐈|𝟎 𝚷2 = 𝐊2 𝐑|𝐭

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝚷1 = 𝐊1 𝐈|𝟎 𝚷2 = 𝐊2 𝐑|𝐭

𝐑|𝐭

𝐨1 𝐨2

𝐏

𝐩1 𝐩2

图像1 图像2

𝚷1 = 𝐊1 𝐈|𝟎 𝚷2 = 𝐊2 𝐑|𝐭

𝐑|𝐭

本质矩阵

𝑥2

𝑦2

1
𝐊2

−T𝐄𝐊1
−1

𝑥1

𝑦1

1
= 0

本质矩阵

𝐄 = 𝐭× 𝐑

本质矩阵

𝐄 = 𝐭× 𝐑

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

本质矩阵

𝐄 = 𝐭× 𝐑

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

回顾：线性代数

定理：令𝐌是一个𝑑 × 𝑑实反对称矩阵，它具有非零虚
特征值𝑖𝜆1, ⋯ , 𝑖𝜆𝑑，则存在正交矩阵𝐔，使得：

定理：令𝐌是一个𝑑 × 𝑑实反对称矩阵，它具有非零虚
特征值𝑖𝜆1, ⋯ , 𝑖𝜆𝑑，则存在正交矩阵𝐔，使得：

𝐌 = 𝐔

0 𝜆1

−𝜆1 0
0 𝜆2

−𝜆2 0
⋱

0 𝜆 Τ𝑑 2

−𝜆 Τ𝑑 2 0

0
⋱

0

𝐔𝑇

定义：矩阵的初等行变换指

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数
3. 将矩阵的某一行乘以任意一个数，加到另一行

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数
3. 将矩阵的某一行乘以任意一个数，加到另一行

𝐀𝐱 = 𝐛

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数
3. 将矩阵的某一行乘以任意一个数，加到另一行

𝐀𝐱 = 𝐛

𝐀|𝐛

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数
3. 将矩阵的某一行乘以任意一个数，加到另一行

𝐀𝐱 = 𝐛

𝐀|𝐛

定义：矩阵的初等行变换指
1. 互换矩阵中两行的位置
2. 将矩阵的一行乘以非零常数
3. 将矩阵的某一行乘以任意一个数，加到另一行

𝐀𝐱 = 𝐛

𝐀|𝐛

回顾：线性代数

本质矩阵

𝐄 = 𝐭× 𝐑

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

𝐄 = 𝐭× 𝐑

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐙

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐙

代入

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐙

代入
𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐙

代入
𝐄 = 𝐔𝐙𝐔T𝐑

𝐏𝑟
T𝐄𝐏𝑙 = 0

𝐄 = 𝐭× 𝐑

我们有：

𝐭× =

0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0

谱分解

𝐭× = 𝜆𝐔
0 1 0

−1 0 0
0 0 0

𝐔T

𝐙

代入
𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

比较两个式子，为了把𝐄写成SVD的形式，需
要把𝐙构造成对角矩阵和正交矩阵相乘的形式

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

比较两个式子，为了把𝐄写成SVD的形式，需
要把𝐙构造成对角矩阵和正交矩阵相乘的形式

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

比较两个式子，为了把𝐄写成SVD的形式，需
要把𝐙构造成对角矩阵和正交矩阵相乘的形式

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

比较两个式子，为了把𝐄写成SVD的形式，需
要把𝐙构造成对角矩阵和正交矩阵相乘的形式

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换
1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

𝐄 = 𝐔𝐙𝐔T𝐑

我们有：

𝐄 = 𝐔𝚺𝐕T

比较两个式子，为了把𝐄写成SVD的形式，需
要把𝐙构造成对角矩阵和正交矩阵相乘的形式

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换
1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

𝐖

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换
1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

𝐖

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换
1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

𝐖

𝐖 = 𝐑𝑍

𝜋

2
=

0 −1 0
1 0 0
0 0 1

𝐙|𝐈 =
0 1 0

−1 0 0
0 0 0

1 0 0
0 1 0
0 0 1

初等矩阵变换
1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

𝐖

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑
正交矩阵

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑
正交矩阵

改写

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑
正交矩阵

改写

𝐄 = 𝐔 diag 1,1,0 𝐕T

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑
正交矩阵

改写

𝐄 = 𝐔 diag 1,1,0 𝐕T

𝐙𝐖 = diag 1,1,0

𝐙𝐖T = − diag 1,1,0

代入𝐄 = 𝐔𝐙𝐔T𝐑

𝐄 = 𝐔 diag 1,1,0 𝐖T𝐔T𝐑

或

𝐄 = 𝐔 diag 1,1,0 −𝐖𝐔T𝐑
正交矩阵

改写

𝐄 = 𝐔 diag 1,1,0 𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

𝐑𝟏 = 𝐔𝐖𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

我们又有：

𝐙𝐖T = − diag 1,1,0

𝐑𝟏 = 𝐔𝐖𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

我们又有：

𝐙𝐖T = − diag 1,1,0

𝐑𝟏 = 𝐔𝐖𝐕T

并服从如下约束：

det 𝐑 = 1

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

我们又有：

𝐙𝐖T = − diag 1,1,0

𝐑𝟏 = 𝐔𝐖𝐕T

并服从如下约束：

det 𝐑 = 1

同理

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

我们又有：

𝐙𝐖T = − diag 1,1,0

𝐑𝟏 = 𝐔𝐖𝐕T

并服从如下约束：

det 𝐑 = 1

同理

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐄 = 𝐔 diag 1,1,0 𝐕T

代入𝐙𝐖 = diag 1,1,0

𝐄 = 𝐔𝐙𝐖𝐕T

我们有：

𝐄 = 𝐭× 𝐑 = 𝐔𝐙𝐔T 𝐑

对比

我们又有：

𝐙𝐖T = − diag 1,1,0

𝐑𝟏 = 𝐔𝐖𝐕T

并服从如下约束：

det 𝐑 = 1

同理

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭× = 𝐔𝐙𝐔T

𝐭× = 𝐔𝐙𝐔T

我们有：

𝐭× 𝐭 = 𝟎

𝐭× = 𝐔𝐙𝐔T

我们有：

𝐭× 𝐭 = 𝟎

𝐭× = 𝐔𝐙𝐔T

我们有：

𝐭× 𝐭 = 𝟎

𝐭× = 𝐔𝐙𝐔T

我们有：

𝐭× 𝐭 = 𝟎

考虑一个尺度因子𝜆 = ±1：

𝐭× = 𝐔𝐙𝐔T

我们有：

𝐭× 𝐭 = 𝟎

考虑一个尺度因子𝜆 = ±1：

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐑1|𝐭1

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐑1|𝐭1

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐑1|𝐭1

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭1

𝐑1|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭1

𝐑1|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭1

𝐑1|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐏

𝐩1

𝐩2

𝐨1 𝐨2

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐑1|𝐭1

𝐑2|𝐭1

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐏

𝐩1

𝐩2

𝐨1 𝐨2

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭1

𝐑1|𝐭2

𝐑2|𝐭1

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐏

𝐩1

𝐩2

𝐨1 𝐨2

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐨2 𝐨1

𝐩1

𝐩2

𝐏
𝐑1|𝐭1

𝐑1|𝐭2

𝐑2|𝐭1

𝐑2|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐏

𝐩1

𝐩2

𝐨1 𝐨2

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐨2 𝐨1

𝐩1

𝐩2

𝐏
𝐑1|𝐭1

𝐑1|𝐭2

𝐑2|𝐭1

𝐑2|𝐭2

𝐑𝟏 = 𝐔𝐖𝐕T

𝐑𝟐 = 𝐔𝐖T𝐕T

𝐭1 = 𝐮3

𝐭2 = −𝐮3

𝐩1 𝐩2

𝐨1 𝐨2

𝐏

𝐨2 𝐨1

𝐩1

𝐩2

𝐏
𝐑1|𝐭1

𝐑2|𝐭2

𝐏

𝐩1

𝐩2

𝐨1 𝐨2

𝐑2|𝐭1

𝐨2 𝐨1

𝐏

𝐩2 𝐩1

𝐑1|𝐭2

如果世界表面为平面，或平移分量太小，
本质/基础矩阵退化

如果世界表面为平面，或平移分量太小，
本质/基础矩阵退化

𝜔
𝑥′

𝑦′

1

= 𝐇
𝑥
𝑦
1

单应矩阵

𝐗 =
𝑋
𝑌
0

𝐱
𝑤

𝑥
𝑦
1

=

ℎ11

ℎ21

ℎ31

ℎ12

ℎ22

ℎ32

ℎ13

ℎ23

ℎ33

𝑋
𝑌
1

𝐗

𝐱2

𝐇1

𝐇2

𝐇2
−1

𝑤
𝑥1

𝑦1

1
= 𝐇

𝑥2

𝑦2

1

𝐱1

𝐗

𝐱

𝐱′

𝑜

𝜔
𝑥′

𝑦′

1

= 𝐇
𝑥
𝑦
1

单应矩阵

𝐱𝑖 = 𝑥𝑖 , 𝑦𝑖

𝐱𝑖 = 𝑥𝑖 , 𝑦𝑖 𝜔
𝑥𝑖

′

𝑦𝑖
′

1

= 𝐇
𝑥𝑖

𝑦𝑖

1

𝜔
𝑥𝑖

′

𝑦𝑖
′

1

= 𝐇
𝑥𝑖

𝑦𝑖

1

𝜔
𝑥𝑖

′

𝑦𝑖
′

1

= 𝐇
𝑥𝑖

𝑦𝑖

1

=

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

𝑥𝑖

𝑦𝑖

1

𝜔
𝑥𝑖

′

𝑦𝑖
′

1

= 𝐇
𝑥𝑖

𝑦𝑖

1

=

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

𝑥𝑖

𝑦𝑖

1

展开

𝜔
𝑥𝑖

′

𝑦𝑖
′

1

= 𝐇
𝑥𝑖

𝑦𝑖

1

=

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

𝑥𝑖

𝑦𝑖

1

𝐱𝑖
′ =

ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

展开

𝐱𝑖
′ =

ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

𝐱𝑖
′ =

ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23

ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝐡∗ = arg min
𝐡

𝐀𝐡 2

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝐡∗ = arg min
𝐡

𝐀𝐡 2

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝐡∗ = arg min
𝐡

𝐀𝐡 2 subject to 𝐡 = 1

𝑥1 𝑦1 1
0 0 0

0 0 0
𝑥1 𝑦1 1

−𝑥1𝑥1
′ −𝑦1𝑥1

′ −𝑥1
′

−𝑥1𝑦1
′ −𝑦1𝑦1

′ −𝑦1
′

⋮
𝑥𝑁 𝑦𝑁 1
0 0 0

0 0 0
𝑥𝑁 𝑦𝑁 1

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑥𝑁
′

−𝑥𝑁𝑥𝑁
′ −𝑥𝑁𝑥𝑁

′ −𝑦𝑁
′

𝐡 = 𝟎

𝐡∗ = arg min
𝐡

𝐀𝐡 2 subject to 𝐡 = 1

ℎ11

ℎ21

ℎ31

ℎ12

ℎ22

ℎ32

ℎ13

ℎ23

ℎ33

= 𝐌int

𝑟11

𝑟21

𝑟31

𝑟12

𝑟22

𝑟32

𝑡𝑥

𝑡𝑦

𝑡𝑧

ℎ11

ℎ21

ℎ31

ℎ12

ℎ22

ℎ32

ℎ13

ℎ23

ℎ33

= 𝐌int

𝑟11

𝑟21

𝑟31

𝑟12

𝑟22

𝑟32

𝑡𝑥

𝑡𝑦

𝑡𝑧

INRIA, 2007

Simultaneous Localization and Mapping
同步定位与制图

SLAM

鸣谢：Hypo Lim et al.

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95
	幻灯片 96
	幻灯片 97
	幻灯片 98
	幻灯片 99
	幻灯片 100
	幻灯片 101
	幻灯片 102
	幻灯片 103
	幻灯片 104
	幻灯片 105
	幻灯片 106
	幻灯片 107
	幻灯片 108
	幻灯片 109
	幻灯片 110
	幻灯片 111
	幻灯片 112
	幻灯片 113
	幻灯片 114
	幻灯片 115
	幻灯片 116
	幻灯片 117
	幻灯片 118
	幻灯片 119
	幻灯片 120
	幻灯片 121
	幻灯片 122
	幻灯片 123
	幻灯片 124
	幻灯片 125
	幻灯片 126
	幻灯片 127
	幻灯片 128
	幻灯片 129
	幻灯片 130
	幻灯片 131
	幻灯片 132
	幻灯片 133
	幻灯片 134
	幻灯片 135
	幻灯片 136
	幻灯片 137
	幻灯片 138
	幻灯片 139
	幻灯片 140
	幻灯片 141
	幻灯片 142
	幻灯片 143
	幻灯片 144
	幻灯片 145
	幻灯片 146
	幻灯片 147
	幻灯片 148
	幻灯片 149
	幻灯片 150
	幻灯片 151
	幻灯片 152
	幻灯片 153
	幻灯片 154
	幻灯片 155
	幻灯片 156
	幻灯片 157
	幻灯片 158
	幻灯片 159
	幻灯片 160
	幻灯片 161
	幻灯片 162
	幻灯片 163
	幻灯片 164
	幻灯片 165
	幻灯片 166
	幻灯片 167
	幻灯片 168
	幻灯片 169
	幻灯片 170
	幻灯片 171
	幻灯片 172
	幻灯片 173
	幻灯片 174
	幻灯片 175
	幻灯片 176
	幻灯片 177
	幻灯片 178
	幻灯片 179
	幻灯片 180
	幻灯片 181
	幻灯片 182
	幻灯片 183
	幻灯片 184
	幻灯片 185
	幻灯片 186
	幻灯片 187
	幻灯片 188
	幻灯片 189
	幻灯片 190
	幻灯片 191
	幻灯片 192
	幻灯片 193
	幻灯片 194
	幻灯片 195
	幻灯片 196
	幻灯片 197
	幻灯片 198
	幻灯片 199
	幻灯片 200
	幻灯片 201
	幻灯片 202
	幻灯片 203
	幻灯片 204
	幻灯片 205
	幻灯片 206
	幻灯片 207
	幻灯片 208
	幻灯片 209
	幻灯片 210
	幻灯片 211
	幻灯片 212
	幻灯片 213
	幻灯片 214
	幻灯片 215
	幻灯片 216
	幻灯片 217
	幻灯片 218
	幻灯片 219
	幻灯片 220
	幻灯片 221
	幻灯片 222
	幻灯片 223
	幻灯片 224
	幻灯片 225
	幻灯片 226
	幻灯片 227
	幻灯片 228
	幻灯片 229
	幻灯片 230
	幻灯片 231
	幻灯片 232
	幻灯片 233
	幻灯片 234
	幻灯片 235
	幻灯片 236
	幻灯片 237
	幻灯片 238
	幻灯片 239
	幻灯片 240
	幻灯片 241
	幻灯片 242
	幻灯片 243
	幻灯片 244
	幻灯片 245
	幻灯片 246
	幻灯片 247
	幻灯片 248
	幻灯片 249
	幻灯片 250
	幻灯片 251
	幻灯片 252
	幻灯片 253
	幻灯片 254
	幻灯片 255
	幻灯片 256
	幻灯片 257
	幻灯片 258
	幻灯片 259
	幻灯片 260
	幻灯片 261
	幻灯片 262
	幻灯片 263
	幻灯片 264
	幻灯片 265
	幻灯片 266
	幻灯片 267

