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Perception & Psychophysics
1973, Vol. 14, No. 2, 201-211

Visual perception of biological motion and a model for its analysis™

GUNNAR JOHANSSON
University of Uppsala, S:t Larsgatan 2, S-752 20 Uppsala, Sweden

This paper reports the first phase of a research program on visual perception of motion patterns characteristic of
living organisms in locomotion. Such motion patterns in animals and men are termed here as biclogical motion. They
are characterized by a far higher degree of complexity than the patterns of simple mechanical motions usually studied
in our laboratories. In everyday perceptions, the visual information from biological motion and from the corresponding
figurative contour patterns (the shape of the body) are intermingled. A method for studying information from the
motion pattern per se without interference with the form aspect was devised. In short, the motion of the living body
was represented by a few bright spots describing the motions of the main joints. It is found that 10-12 such elements in
adequate motion combinations in proximal stimulus evoke a compelling impression of human walking, running,
dancing, etc. The kinetic-geometric model for visual vector analysis originally developed in the study of perception of
motion combinations of the mechanical type was applied to these biological motion patterns. The validity of this model
in the present context was experimentally tested and the results turned out to be highly positive.

Perception & Psychophysics, 1973
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An lterative Image Registration Technique
with an Application to Stereo Vision

Bruce D. Lucas
Takeo Kanade

Computer Science Department
Carnegie-Mellon  University
Pittsburgh, Pennsylvania 15213

International Joint Conference on Al, 1981
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Good Features to Track

Jianbo Shi
Computer Science Department
Cornell University
Ithaca, NY 14853

Abstract

No feature-based vision system can work unless good
features can be identified and tracked from frame to
frame. Although tracking itself is by and large a solved
problem, selecting features that can be tracked well and
correspond to physzcal pamts in the world is still hard.

rr ottt oal o a1

CVPR, 1994

Carlo Tomasi
Computer Science Department
Stanford University
Stanford, CA 94305

even good features can become occluded, and trackers
often blissfully drift away from their original target
when this occurs. No feature-based vision system can
be claimed to really work until these issues have been
settled.

In this paper we show how to monitor the quality of
1ma,ge fea,tures durlng tracking by using a measure of
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Determining Optical Flow

Berthold K.P. Horn and Brian G. Schunck
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02139, U.S.A.

Artificial Intelligence, 1981
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A[4ui,j B (ui—l,j T Ujpy,j T ULj—1 T ui,j+1)] =0

(Leui j + Lyv j + 1)1,
/1[4vi,j B (Vi—l,j T Vit1,j T Vij-1 7T vi,j+1)] =0

FTEREKE s =




(Lewg j + Ly j+ 1)1 +

A[4ui,j — (ui—1,j +Ujpqj T U1 T+ ui,j+1)] =0

(L ; + Lvy ; + 1)1,
/1[417”- B (vi‘l'f T Vit1,j T Vij1 T Vi,j+1)] =0
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(Lewg j + Ly j+ 1)1 +
A4u;j — (wimrj + Uivnj+ Uijor + Uijea)| = 0

(L ; + Lvy ; + 1)1,
/1[417”- B (vi‘l'f T Vit1,j T Vij1 T Ui,j+1)] =0
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(Ixul-,j + vai,j + It)Ix +

AMaw; i — (wiqj +uprj +ug o U j41)] =0

(Lewgj + Lyvij + 1)1,
Mav;j — (vieyj + Vigrj + vijor +V5j41)] = 0
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A Quantitative Analysis of Current Practices in Optical Flow Estimation

and the Principles behind Them

Deqing Sun - Stefan Roth - Michael J. Black

the date of receipt and acceptance should be inserted later

Abstract The accuracy of optical flow estimation algorithm-
s has been improving steadily as evidenced by results on
the Middlebury optical flow benchmark. The typical formu-
lation, however, has changed little since the work of Horn
and Schunck. We attempt to uncover what has made re-
cent advances possible through a thorough analysis of how
the objective function, the optimization method, and modern

imnlamantatinn nranticac inflnanca arcnrany Wa Aiconvar

To take advantage of the trend towards video in wide-screen
format, we further introduce an asymmetric pyramid down-
sampling scheme that enables the estimation of longer range
horizontal motions. The methods are evaluated on Middle-
bury, MPI Sintel, and KITTI datasets using the same param-
eter settings.

Keywords Optical flow estimation - Practices - Median

International Journal of Computer Vision, 2014
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800 vision.middlebury.edu/flow/data -

/i vision.middlebury.edu :
stereo + mview - MRF -|flow|- color
Optical Flow Evaluation - |Datasets |+ Submit
Evaluation Datasets
With hidden ground-truth flow

| ' =
Urban X WWWWEW
foe =]

- o s

2
Flow Eval yes yes yes yes yes yes yes yes
Iinterp Eval - yes yes - - yes - yes

Color |Gray
All frames (usually 8) |oval-color-allirames zip (31M8)|gval-gray-alliframes zip (12MB)
Two frames only eval-color-twolrames zip (8MB) | aval-gray-twoframes.zip (3MB)

Instructions for participating in the evaluation can be found on the Submit page.

Other Datasets

With public ground-truth flow. These can be used for training.
Hidden Texture High-speed camera (no GT)

Venus | Beanbags Dowmoo MiniCooper Waking

Ana
# frames 8 8 2 8 8 8 8 | 2 8 8 8 B8
Color Gray
All frames (usually 8) other-color-aliirames.zip (32MB) |other-gray-allframes.zip (12MB)
Two frames only other-color-twolrames zip (9MB) |other-gray-twolrames ip (3.4M8B)
Ground-truth flow other-gl-flow.zip (13M8B)
Ground-truth interpolation | other-gl-interp 2 (4.5MB) [other-gtinterp-gray.zip (1.7MB)

sion is available in flow-code-matiab.zip.

REXFE CREREESRR)
—










and Rankinggu

appear here after users upioad them and approve

GroundTruth ') 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EpicFlow 7 6.469 3157 33477 5112 2,566 2352 1.180 4.000 38,687
TriFlowFused 1 6.988 3.590 34.631 5.520 3.488 2.821 1.499 3911 41.622

DeepFlow 4 7212 3.336 38.781 5650 3.144 2208 1284 4107 44.118 Visusiize Results

IVANN 4 7.249 2,973 42.088 4,896 2817 2218 1159 4183 44.866 Visualize Results
TriFlow (6! 7.617 3.690 39.613 5500 3583 3.010 1.701 4.067 45128
$2D-Matching 1 7.872 3918 40.093 5.975 3815 2.851 1172 4695 48.782
FC-2Layers-FF ] 8.137 4.261 39.723 6.537 4257 2.946 1.034 4.835 51.349
ComponentFusion % 8.231 4.274 40.460 6.221 4.252 3193 1702 5701 46.696
a0 e 8.287 4.165 41.905 6.345 4127 2.996 1.312 5122 50.540

M P I S J t I 8.291 4287 40.925 6.520 4265 2984 1208 5000 51.162 Vissize Results
T I n e 8.377 4.288 41.695 6.556 4.024 3323 1.834 4.955 49,083
MDP-Flow2 (3] 8.445 4.150 43.430 5.703 3925 3.406 1.420 5.449 50.507

Data-Flow 14 8.868 4.601 43.675 7.204 4698 3.021 1794 5294 52,635 Visuaiize Results

=) q o 40 gag ans A0 gan ac TR
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Large Displacement Optical Flow*

Thomas Brox! Christoph Bregler? Jitendra Malik*
!University of California, Berkeley 2Courant Institute, New York University
Berkeley, CA, 94720, USA New York, NY, 10003, USA
{brox,malik}@eecs.berkeley.edu bregler@courant.nyu.edu
Abstract

The literature currently provides two ways to establish
point correspondences between images with moving ob-
jects. On one side, there are energy minimization methods
that yield very accurate, dense flow fields, but fail as dis-
placements get too large. On the other side, there is descrip-
tor matching that allows for large displacements, but corre-
spondences are very sparse, have limited accuracy, and due
to missing regularity constraints there are many outliers. In
this paper we propose a method that can combine the ad-
vantages of both matching strategies. A region hierarchy is
established for both images. Descriptor matching on these
regions provides a sparse set of hypotheses for correspon-

i PR, | L RN SUURPRPNPIIPAY i DRI, [PV | APSUPRPI. DAy Py

CVPR, 2009
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FlowNet: Learning Optical Flow with Convolutional Networks

Philipp Fischer*} Alexey Dosovitskiy} Eddy Ilgf Philip Hiusser, Caner Hazirbas, Vladimir Golkov*
University of Freiburg Technical University of Munich

{fischer, dosovits, ilg}@cs .uni-freiburg.de, {haeusser, hazirbas, golkov}@cs .tum.edu

Patrick van der Smagt Daniel Cremers Thomas Brox
Technical University of Munich Technical University of Munich University of Freiburg
smagt@brml.org cremers@tum.de brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks where CNNs were suc- .
cessful. In this paper we construct appropriate CNNs which A convolutional
are capable of solving the optical flow estimation problem network
as a supervised learning task. We propose and compare
two architectures: a generic architecture and another one
including a layer that correlates feature vectors at different

ICCV, 2015




FlowNet 2.0 vs FlowFields

FlowNet 2.0 generates sharper boundaries,
achieves comparable error scores,
and runs ca. 200x faster



“BNERET! &
BOEZEMNAE S
Bl "
——ERMER- DRI (40

k)

' K F AT R)

B



Back to Basics: Unsupervised Learning of Optical Flow via Brightness
Constancy and Motion Smoothness

Jason J. Yu, Adam W. Harley and Konstantinos G. Derpanis
Department of Computer Science
Ryerson University, Toronto, Canada

{3jjyu, aharley, kosta}@scs.ryerson.ca

Abstract

Recently, convolutional networks (convnets) have proven
useful for predicting optical flow. Much of this success is
predicated on the availability of large datasets that require
expensive and involved data acquisition and laborious la-
beling. To bypass these challenges, we propose an unsuper-
vised approach (i.e., without leveraging groundtruth flow)
to train a convnet end-to-end for predicting optical flow be-
tween two images. We use a loss function that combines
a data term that measures photometric constancy over time
with a spatial term that models the expected variation of
flow across the image. Together these losses form a proxy
measure for losses based on the groundtruth flow. Empiri-

ECCV Workshops, 2016

flow for training, we use the images alone. In particular,
we use a loss function that combines a data term that mea-
sures photometric constancy over time with a spatial term
that models the expected variation of flow across the image.
The photometric loss measures the difference between the
first input image and the (inverse) warped subsequent im-
age based on the predicted optical flow by the network. The
smoothness loss measures the difference between spatially
neighbouring flow predictions. Together, these two losses
form a proxy for losses based on the groundtruth flow.
Recovering optical flow between two frames is a well
studied problem, with much previous work founded on vari-
ational formulations [7, 2, 13, 12]. Our loss is similar to

o
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Spacetime Texture Representation and
Recognition Based on a
Spatiotemporal Orientation Analysis

Konstantinos G. Derpanis, Member, IEEE, and Richard P. Wildes, Member, IEEE

Abstract—This paper is concerned with the representation and recognition of the observed dynamics (i.e., excluding purely spatial
appearance cues) of spacetime texture based on a spatiotemporal orientation analysis. The term “spacetime texture” is taken to refer
to patterns in visual spacetime, (x,y,t), that primarily are characterized by the aggregate dynamic properties of elements or local
measurements accumulated over a region of spatiotemporal support, rather than in terms of the dynamics of individual constituents.
Examples include image sequences of natural processes that exhibit stochastic dynamics (e.g., fire, water, and windblown vegetation)
as well as images of simpler dynamics when analyzed in terms of aggregate region properties (e.g., uniform motion of elements in
imagery, such as pedestrians and vehicular traffic). Spacetime texture representation and recognition is important as it provides an
early means of capturing the structure of an ensuing image stream in a meaningful fashion. Toward such ends, a novel approach to
spacetime texture representation and an associated recognition method are described based on distributions (histograms) of
spacetime orientation structure. Empirical evaluation on both standard and original image data sets shows the promise of the
approach, including significant improvement over alternative state-of-the-art approaches in recognizing the same pattern from different
viewpoints.

Index Terms—Spacetime texture, image motion, dynamic texture, temporal texture, time-varying texture, textured motion, turbulent
flow, stochastic dynamics, distributed representation, spatiotemporal orientation.

TPAMI, 2012
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