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我们如何从图像中恢复3D几何结构？
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In Defense of the Eight-Point Algorithm
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Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point 

algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the

advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually 

useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple

normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative

algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997
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主要步骤



步骤1
将数据点中心化















步骤2
缩放数据











步骤3
计算基础矩阵
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步骤4
去归一化基础矩阵
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𝐅 = 𝐓𝒓
T ෠𝐅𝐓𝑙





1. 将数据点的质心平移到原点



1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素



1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素

3. 按照步骤1、2分别独立处理两张图像，并估计基础矩阵



1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素

3. 按照步骤1、2分别独立处理两张图像，并估计基础矩阵

4. 对所估计的基础矩阵去归一化



如果没有已知的对应关系，
我们如何估计基本矩阵？
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RANdom SAmple Consensus
随机抽样一致

RANSAC



图像矫正
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T𝐄𝐩𝑙 = 0
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𝐑 = 𝐈3×3

𝐓 = 𝐵, 0,0 T
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展开并化简

𝑦𝑟 = 𝑦𝑙
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Python时间



# Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

# Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

# Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

   flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

   flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)
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# Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

# Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

    if m.distance < 0.7 * n.distance:

        good.append([m])

        pts1.append(kp1[m.queryIdx].pt)

        pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None, 

    flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)
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# Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC, 

 ransacReprojThreshold=0.9, confidence=0.99

)

# Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]
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# Stereo rectification (uncalibrated variant) 

h1, w1 = img1.shape

h2, w2 = img2.shape

_, H1, H2 = cv2.stereoRectifyUncalibrated( 

 pts1, pts2, fundamental_matrix, imgSize=(w1, h1)

) 

# Rectify the images

I1_rect = cv2.warpPerspective(I1, H1, (w1, h1))

I2_rect = cv2.warpPerspective(I2, H2, (w2, h2))

# Visualize rectified images

I1_I2_rect = np.concatenate((I1_rect, I2_rect), axis=1)

cv2.imshow('Rectified images', I1_I2_rect), cv2.waitKey(0)
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立体匹配
基于块的方法
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对于左视图中的每个点，
找到右视图中“最佳”匹配块
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视差



左视图 右视图

匹配代价
(SAD)

视差



左视图 右视图

匹配代价
(SAD)

视差



左视图 右视图

匹配代价
(SAD)

视差



左视图 右视图

匹配代价
(SAD)

视差



SAD视差输出



图割视差输出
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平面扫描
基于单应变换的方法
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有没有更好的办法？



𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎



𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1



𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2



𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2

深度𝑑平面的单应变换：𝐇𝑘 = 𝐊𝑘 𝐑𝑘
T +

𝐑𝑘
T𝐭𝑘𝐧T

𝑑
𝐊ref

−1



𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2

深度𝑑平面的单应变换：𝐇𝑘 = 𝐊𝑘 𝐑𝑘
T +

𝐑𝑘
T𝐭𝑘𝐧T

𝑑
𝐊ref

−1
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෍

𝑖,𝑗∈𝑊

𝐼ref 𝑥 − 𝑖, 𝑦 − 𝑗 − 𝛽𝑘
ref𝐼𝑘

𝑑 𝑥𝑘 − 𝑖, 𝑦𝑘 − 𝑗





ECCV, 2018



困难？
为什么图像对应问题



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟



𝑥

𝑂𝑙 𝑂𝑟























Journal of Machine Learning Research, 2016



CVPR, 2016













𝑂𝑟

𝑥

𝑂𝑙



𝑂𝑟

𝑥

𝑂𝑙



𝑂𝑟

𝑥

𝑂𝑙



𝑂𝑟

𝑥

𝑂𝑙



𝑂𝑟

𝑥

𝑂𝑙



𝑂𝑟

𝑥

𝑂𝑙



Kinect的红外视图



iPhone X







前置
摄像头红外相机



前置
摄像头红外相机

泛光照明器 点投影仪





Microsoft 
HoloLens
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