
计算机视觉

立体视觉

本节主题：
三角测量

本节主题：
三角测量
立体匹配

本节主题：
三角测量
立体匹配
平面扫描

我们如何从图像中恢复3D几何结构？

运动视差

𝐨𝑙 𝐨𝑟

𝐏

𝐩𝑙 𝐩𝑟

𝐞𝑙 𝐞𝑟

极面

像平面

基线

极线 极线

𝐏

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐏𝑟𝐏𝑙

基础矩阵约束：෥𝐩𝑟
T𝐅෥𝐩𝑙 = 𝟎

基础矩阵：𝐅 = 𝐌int,𝒓
−T 𝐄𝐌int,𝒍

−𝟏

𝐏

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐏𝑟𝐏𝑙

基础矩阵约束：෥𝐩𝑟
T𝐅෥𝐩𝑙 = 𝟎

基础矩阵：𝐅 = 𝐌int,𝒓
−T 𝐄𝐌int,𝒍

−𝟏

𝐏

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐏𝑟𝐏𝑙

基础矩阵约束：෥𝐩𝑟
T𝐅෥𝐩𝑙 = 𝟎

基础矩阵：𝐅 = 𝐌int,𝒓
−T 𝐄𝐌int,𝒍

−𝟏

𝐏在左、右两个视点中的像素坐标之间的约束关系

𝑥𝑙 , 𝑦𝑙 , 1 T

极线：𝐥′ = 𝐅𝐱𝑙

𝑥𝑙 , 𝑦𝑙 , 1 T

极线：𝐥′ = 𝐅𝐱𝑙

vs.

单应矩阵 基础矩阵

𝐱′ = 𝐇𝐱
单应矩阵将一个点映射到一个点

𝐥′ = 𝐅𝐱
基础矩阵将一个点映射到一条直线

Nature, 1981

8点算法

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

arg min
𝐟

𝐀𝐟 2

并服从如下约束

𝐟 = 1

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

图像噪声

580 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 6, JUNE 1997

In Defense of the Eight-Point Algorithm
Richard I. Hartley

Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point

algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the

advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually

useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple

normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative

algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997

580 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 6, JUNE 1997

In Defense of the Eight-Point Algorithm
Richard I. Hartley

Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point

algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the

advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually

useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple

normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative

algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝐩𝑟
T𝐅𝐩𝑙 = 0

𝑥𝑟1𝑥𝑙1, 𝑥𝑟1𝑦𝑙1, 𝑥𝑟1, 𝑦𝑟1𝑥𝑙1, 𝑦𝑟1𝑦𝑙1, 𝑦𝑟1, 𝑥𝑙1, 𝑦𝑙1, 1
⋮

𝑥𝑟𝑛𝑥𝑙𝑛, 𝑥𝑟𝑛𝑦𝑙𝑛, 𝑥𝑟𝑛, 𝑦𝑟𝑛𝑥𝑙𝑛, 𝑦𝑟𝑛𝑦𝑙𝑛, 𝑦𝑟𝑛, 𝑥𝑙𝑛, 𝑦𝑙𝑛, 1

𝐹11

𝐹12

𝐹13

𝐹21

𝐹22

𝐹23

𝐹31

𝐹32

𝐹33

= 𝟎

𝐀

𝐟

𝐩𝑟
T𝐅𝐩𝑙 = 0

4
主要步骤

步骤1
将数据点中心化

步骤2
缩放数据

步骤3
计算基础矩阵

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

步骤4
去归一化基础矩阵

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

展开

𝐩𝒓
T𝐓𝒓

T𝐅𝐓𝑙𝐩𝑙 = 0

𝐓𝑟𝐩𝑟
T𝐅 𝐓𝑙𝐩𝑙 = 0

展开

𝐩𝒓
T𝐓𝒓

T𝐅𝐓𝑙𝐩𝑙 = 0

𝐅 = 𝐓𝒓
T ෠𝐅𝐓𝑙

1. 将数据点的质心平移到原点

1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素

1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素

3. 按照步骤1、2分别独立处理两张图像，并估计基础矩阵

1. 将数据点的质心平移到原点

2. 缩放点的坐标使得它们到原点的平均距离等于2像素

3. 按照步骤1、2分别独立处理两张图像，并估计基础矩阵

4. 对所估计的基础矩阵去归一化

如果没有已知的对应关系，
我们如何估计基本矩阵？

Communications of the ACM, 1981Communications of the ACM, 1981

RANdom SAmple Consensus
随机抽样一致

RANSAC

图像矫正

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

P

𝐩𝑟
T𝐄𝐩𝑙 = 0

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

P

𝐑 = 𝐈3×3

𝐓 = 𝐵, 0,0 T

𝑥𝑟 , 𝑦𝑟 , 1 𝐓× 𝑥𝑙 , 𝑦𝑙 , 1 T = 0

展开并化简

𝑦𝑟 = 𝑦𝑙

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

P

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

P

𝐨𝑙 𝐨𝑟

P

𝐨𝑙 𝐨𝑟

P

𝐨𝑙 𝐨𝑟

P

𝐨𝑙 𝐨𝑟

P

Python时间

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Load stereo image pair and convert to grayscale

I1 = cv2.imread('left.png', cv2.IMREAD_GRAYSCALE)

I2 = cv2.imread('right.png', cv2.IMREAD_GRAYSCALE)

Find the keypoints and descriptors with SIFT

sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(I1, None)

kp2, des2 = sift.detectAndCompute(I2, None)

Visualize keypoints

I1_sift = cv2.drawKeypoints(I1, kp1, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I2_sift = cv2.drawKeypoints(I2, kp2, None,

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

I1_I2_sift = np.concatenate((I1_sift, I2_sift), axis=1)

cv2.imshow('Image SIFT keypoints', I1_I2_sift)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Match keypoints in both images

FLANN_INDEX_KDTREE = 1

index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)

flann = cv2.FlannBasedMatcher(index_params, {})

matches = flann.knnMatch(des1, des2, k=2)

Keep good matches: calculate distinctive image features

good, pts1, pts2 = [], [], []

for i, (m, n) in enumerate(matches):

 if m.distance < 0.7 * n.distance:

 good.append([m])

 pts1.append(kp1[m.queryIdx].pt)

 pts2.append(kp2[m.trainIdx].pt)

keypoint_matches = cv2.drawMatchesKnn(I1, kp1, I2, kp2, good, None,

 flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

cv2.imshow('Keypoint matches', keypoint_matches)

Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC,

 ransacReprojThreshold=0.9, confidence=0.99

)

Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]

Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC,

 ransacReprojThreshold=0.9, confidence=0.99

)

Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]

Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC,

 ransacReprojThreshold=0.9, confidence=0.99

)

Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]

Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC,

 ransacReprojThreshold=0.9, confidence=0.99

)

Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]

Calculate the fundamental matrix for the cameras

pts1 = np.float32(pts1)

pts2 = np.float32(pts2)

fundamental_matrix, inliers = cv2.findFundamentalMat(

 pts1, pts2, cv2.FM_RANSAC,

 ransacReprojThreshold=0.9, confidence=0.99

)

Select only inlier points

pts1 = pts1[inliers.ravel() == 1]

pts2 = pts2[inliers.ravel() == 1]

Stereo rectification (uncalibrated variant)

h1, w1 = img1.shape

h2, w2 = img2.shape

_, H1, H2 = cv2.stereoRectifyUncalibrated(

 pts1, pts2, fundamental_matrix, imgSize=(w1, h1)

)

Rectify the images

I1_rect = cv2.warpPerspective(I1, H1, (w1, h1))

I2_rect = cv2.warpPerspective(I2, H2, (w2, h2))

Visualize rectified images

I1_I2_rect = np.concatenate((I1_rect, I2_rect), axis=1)

cv2.imshow('Rectified images', I1_I2_rect), cv2.waitKey(0)

Stereo rectification (uncalibrated variant)

h1, w1 = img1.shape

h2, w2 = img2.shape

_, H1, H2 = cv2.stereoRectifyUncalibrated(

 pts1, pts2, fundamental_matrix, imgSize=(w1, h1)

)

Rectify the images

I1_rect = cv2.warpPerspective(I1, H1, (w1, h1))

I2_rect = cv2.warpPerspective(I2, H2, (w2, h2))

Visualize rectified images

I1_I2_rect = np.concatenate((I1_rect, I2_rect), axis=1)

cv2.imshow('Rectified images', I1_I2_rect), cv2.waitKey(0)

Stereo rectification (uncalibrated variant)

h1, w1 = img1.shape

h2, w2 = img2.shape

_, H1, H2 = cv2.stereoRectifyUncalibrated(

 pts1, pts2, fundamental_matrix, imgSize=(w1, h1)

)

Rectify the images

I1_rect = cv2.warpPerspective(I1, H1, (w1, h1))

I2_rect = cv2.warpPerspective(I2, H2, (w2, h2))

Visualize rectified images

I1_I2_rect = np.concatenate((I1_rect, I2_rect), axis=1)

cv2.imshow('Rectified images', I1_I2_rect), cv2.waitKey(0)

Stereo rectification (uncalibrated variant)

h1, w1 = img1.shape

h2, w2 = img2.shape

_, H1, H2 = cv2.stereoRectifyUncalibrated(

 pts1, pts2, fundamental_matrix, imgSize=(w1, h1)

)

Rectify the images

I1_rect = cv2.warpPerspective(I1, H1, (w1, h1))

I2_rect = cv2.warpPerspective(I2, H2, (w2, h2))

Visualize rectified images

I1_I2_rect = np.concatenate((I1_rect, I2_rect), axis=1)

cv2.imshow('Rectified images', I1_I2_rect), cv2.waitKey(0)

Python时间

三角测量

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐩𝑙

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐩𝑙 𝐩𝑟

𝐏的3D坐标可以通过射线的交点确定

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐩𝑙 𝐩𝑟

𝐏的3D坐标可以通过射线的交点确定

𝐨𝑙 𝐨𝑟

𝑍

𝑋

𝐏

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝑇相机中心距离

𝑇

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝑇相机中心距离

𝑇

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝑇相机中心距离

𝑇

𝑍到基线的距离
𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝑇相机中心距离

𝑇

𝑍到基线的距离
𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

定义

𝑇相机中心距离

𝑇

𝑍到基线的距离
𝑍

𝑓共同焦距

𝑓

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

∆𝐨𝑙𝐏𝐨𝑟

和

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

∆𝐨𝑙𝐏𝐨𝑟

和

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

∆𝐨𝑙𝐏𝐨𝑟

和

通过相似三角形

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

∆𝐨𝑙𝐏𝐨𝑟

和

通过相似三角形

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

∆𝐩𝑙𝐏𝐩𝑟

∆𝐨𝑙𝐏𝐨𝑟

和

通过相似三角形

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

令𝑑 = 𝑥𝑙 − 𝑥𝑟为视差

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

令𝑑 = 𝑥𝑙 − 𝑥𝑟为视差

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

令𝑑 = 𝑥𝑙 − 𝑥𝑟为视差

𝑇 + 𝑑

𝑍 − 𝑓
=

𝑇

𝑍

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

令𝑑 = 𝑥𝑙 − 𝑥𝑟为视差

𝑇 + 𝑑

𝑍 − 𝑓
=

𝑇

𝑍
整理

𝐨𝑙 𝐨𝑟

𝑍

𝐏

𝐩𝑙 𝐩𝑟

三角测量推导

𝑇

𝑍

𝑓

𝑇 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
=

𝑇

𝑍

令𝑑 = 𝑥𝑙 − 𝑥𝑟为视差

𝑇 + 𝑑

𝑍 − 𝑓
=

𝑇

𝑍
整理

𝑍 = 𝑓
𝑇

𝑑
视差方程：

𝑍 = 𝑓
𝑇

𝑑
视差方程：

备注：

𝑍 = 𝑓
𝑇

𝑑
视差方程：

备注：

假设立体相机是完全平行的

𝑍 = 𝑓
𝑇

𝑑
视差方程：

备注：

假设立体相机是完全平行的

假设对应点完全匹配

𝑍 = 𝑓
𝑇

𝑑
视差方程：

备注：

假设立体相机是完全平行的

假设对应点完全匹配

深度与视差成反比

假设我们有一个完全标定的立体视觉装置

假设我们有一个完全标定的立体视觉装置

假设我们有一个完全标定的立体视觉装置

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐥𝑙 = 𝛼𝐊𝑙
−1𝐩𝑙

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐥𝑙 = 𝛼𝐊𝑙
−1𝐩𝑙

𝑙𝐑𝑟 , 𝐓

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐥𝑙 = 𝛼𝐊𝑙
−1𝐩𝑙

𝐥𝑟 = 𝛽𝑙𝐑𝑟𝐊𝑟
−1𝐩𝑟 + 𝐓

𝑙𝐑𝑟 , 𝐓

𝐩𝑙 𝐩𝑟

𝐏midpoint

𝐨𝑙 𝐨𝑟

𝐥𝑙 = 𝛼𝐊𝑙
−1𝐩𝑙

𝐥𝑟 = 𝛽𝑙𝐑𝑟𝐊𝑟
−1𝐩𝑟 + 𝐓

𝑙𝐑𝑟 , 𝐓

arg min
𝛼,𝛽

𝛼𝐊𝑙
−1𝐩𝑙 − 𝛽𝑙𝐑𝑟𝐊𝑟

−1𝐩𝑟 + 𝐓

立体匹配
基于块的方法

左视图 右视图

左视图 右视图

左视图 右视图

对于左视图中的每个点，
找到右视图中“最佳”匹配块

左视图 右视图

对于左视图中的每个点，
找到右视图中“最佳”匹配块

左视图 右视图

对于左视图中的每个点，
找到右视图中“最佳”匹配块

左视图 右视图

对于左视图中的每个点，
找到右视图中“最佳”匹配块

左视图 右视图

左视图 右视图

匹配代价
(SAD)

视差

左视图 右视图

匹配代价
(SAD)

视差

左视图 右视图

匹配代价
(SAD)

视差

左视图 右视图

匹配代价
(SAD)

视差

左视图 右视图

匹配代价
(SAD)

视差

SAD视差输出

图割视差输出

CVPR, 2021

平面扫描
基于单应变换的方法

𝑑

𝑑

𝑑

𝑑

𝑑

𝑑

𝑑near

𝑑far

𝑑near

𝑑far

𝑑far

𝑑near

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝑑

𝐱

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝑑

𝐱

𝐗

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝑑

𝐱

𝐗

𝐱2

𝐊2 𝐑2|𝐭2

𝐱1

𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

有没有更好的办法？

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2

深度𝑑平面的单应变换：𝐇𝑘 = 𝐊𝑘 𝐑𝑘
T +

𝐑𝑘
T𝐭𝑘𝐧T

𝑑
𝐊ref

−1

𝑑

𝐊2 𝐑2|𝐭2
𝐊1 𝐑1|𝐭1

𝐊ref 𝐈|𝟎

𝐇1 𝐇2

深度𝑑平面的单应变换：𝐇𝑘 = 𝐊𝑘 𝐑𝑘
T +

𝐑𝑘
T𝐭𝑘𝐧T

𝑑
𝐊ref

−1

代价体积：𝐶 𝑥, 𝑦, 𝑑 = ෍

𝑘=0

𝑁−1

෍

𝑖,𝑗∈𝑊

𝐼ref 𝑥 − 𝑖, 𝑦 − 𝑗 − 𝛽𝑘
ref𝐼𝑘

𝑑 𝑥𝑘 − 𝑖, 𝑦𝑘 − 𝑗

ECCV, 2018

困难？
为什么图像对应问题

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

𝑥

𝑂𝑙 𝑂𝑟

Journal of Machine Learning Research, 2016

CVPR, 2016

𝑂𝑟

𝑥

𝑂𝑙

𝑂𝑟

𝑥

𝑂𝑙

𝑂𝑟

𝑥

𝑂𝑙

𝑂𝑟

𝑥

𝑂𝑙

𝑂𝑟

𝑥

𝑂𝑙

𝑂𝑟

𝑥

𝑂𝑙

Kinect的红外视图

iPhone X

前置
摄像头红外相机

前置
摄像头红外相机

泛光照明器 点投影仪

Microsoft
HoloLens

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95
	幻灯片 96
	幻灯片 97
	幻灯片 98
	幻灯片 99
	幻灯片 100
	幻灯片 101
	幻灯片 102
	幻灯片 103
	幻灯片 104
	幻灯片 105
	幻灯片 106
	幻灯片 107
	幻灯片 108
	幻灯片 109
	幻灯片 110
	幻灯片 111
	幻灯片 112
	幻灯片 113
	幻灯片 114
	幻灯片 115
	幻灯片 116
	幻灯片 117
	幻灯片 118
	幻灯片 119
	幻灯片 120
	幻灯片 121
	幻灯片 122
	幻灯片 123
	幻灯片 124
	幻灯片 125
	幻灯片 126
	幻灯片 127
	幻灯片 128
	幻灯片 129
	幻灯片 130
	幻灯片 131
	幻灯片 132
	幻灯片 133
	幻灯片 134
	幻灯片 135
	幻灯片 136
	幻灯片 137
	幻灯片 138
	幻灯片 139
	幻灯片 140
	幻灯片 141
	幻灯片 142
	幻灯片 143
	幻灯片 144
	幻灯片 145
	幻灯片 146
	幻灯片 147
	幻灯片 148
	幻灯片 149
	幻灯片 150
	幻灯片 151
	幻灯片 152
	幻灯片 153
	幻灯片 154
	幻灯片 155
	幻灯片 156
	幻灯片 157
	幻灯片 158
	幻灯片 159
	幻灯片 160
	幻灯片 161
	幻灯片 162
	幻灯片 163
	幻灯片 164
	幻灯片 165
	幻灯片 166
	幻灯片 167
	幻灯片 168
	幻灯片 169
	幻灯片 170
	幻灯片 171
	幻灯片 172
	幻灯片 173
	幻灯片 174
	幻灯片 175
	幻灯片 176
	幻灯片 177
	幻灯片 178
	幻灯片 179
	幻灯片 180
	幻灯片 181
	幻灯片 182
	幻灯片 183
	幻灯片 184
	幻灯片 185
	幻灯片 186
	幻灯片 187
	幻灯片 188
	幻灯片 189
	幻灯片 190
	幻灯片 191
	幻灯片 192
	幻灯片 193
	幻灯片 194
	幻灯片 195
	幻灯片 196
	幻灯片 197
	幻灯片 198
	幻灯片 199
	幻灯片 200
	幻灯片 201
	幻灯片 202
	幻灯片 203
	幻灯片 204
	幻灯片 205
	幻灯片 206
	幻灯片 207
	幻灯片 208
	幻灯片 209
	幻灯片 210
	幻灯片 211
	幻灯片 212
	幻灯片 213
	幻灯片 214
	幻灯片 215
	幻灯片 216
	幻灯片 217
	幻灯片 218
	幻灯片 219
	幻灯片 220
	幻灯片 221
	幻灯片 222
	幻灯片 223
	幻灯片 224
	幻灯片 225
	幻灯片 226
	幻灯片 227
	幻灯片 228
	幻灯片 229
	幻灯片 230
	幻灯片 231
	幻灯片 232
	幻灯片 233
	幻灯片 234
	幻灯片 235
	幻灯片 236
	幻灯片 237
	幻灯片 238
	幻灯片 239
	幻灯片 240
	幻灯片 241
	幻灯片 242
	幻灯片 243
	幻灯片 244
	幻灯片 245
	幻灯片 246
	幻灯片 247
	幻灯片 248
	幻灯片 249
	幻灯片 250
	幻灯片 251
	幻灯片 252
	幻灯片 253
	幻灯片 254
	幻灯片 255
	幻灯片 256
	幻灯片 257

