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A computer algorithm for 8 b s
reconstructing M)
a scene from two projections

H. C. Longuet-Higgins
Laboratory

Brighton B! '5 /‘é‘ “ ex,
A simple a J ) ‘\ j I {2 nal struc-

ture of a scene Irom a correlaieu pair vi perpecuve projections
is described here, when the spatial relationship between the two
projections is unknown. This problem is relevant not only to
photographic surveying® but also to binocular vision, where the
non-visual information available to the observer about the
orientation and focal length of each eye is much less accurate

Nature, 1981
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In Defense of the Eight-Point Algorithm

Richard |. Hartley

4
Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point
f algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the
[ advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually
useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple
\ normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative
! algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.

1
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\ In Defense of the Eight-Point Algorithm
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j Richard |. Hartley }
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i Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point

algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the

[ advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually
useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple
normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative

! algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.
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Graphics and J. D. Foley
Image Processing Editor

Random Sample
Consensus: A

. e introduce a new paradigm, Random Sample
Paradlgm fOI' MOdCl Cor:lnsust(RiNSAc) for ﬁtfingjfnod:; to experismenI::ll

data; and illustrate its use 1n scene analy51s and auto-

I. Introduction

in general) is concerned with the 1nterpretatxon of sensed
of a set of predefined models. Conceptually,

... RANdom SAmple Consensus

SRI International

t and one of the available models (the classification
m ere is the problem of computing the
al es fi ee parameters of the selected model
A new paradigm, Random Sampl - P

‘l

eiSus
(RANSAC), for fitting a model to experimental data is
introduced. RANSAC is capable of interpreting/
smoothing data containing a significant percentage of
gross errors, and is thus ideally suited for applications
in automated image analysis where interpretation is
based on the data provided by error-prone feature

detectors. A major portion of this paper describes the
annlication of RANSAC to the T.acation Determination

Communications of the ACM, 1981

mmmm e e prm e, men peenie s assumed model is a direct function of the size of the data
derived on the minimum number of landmarks needed set, and thus regardless of the size of the data set, there

to obtain a solution, and aleorithms are presented for L

(the parameter estimation problem). In practice, these
two problems are not independent—a solution to the
parameter estimation problem is often required to solve
the classification problem.

Classical techniques for parameter estimation, such
as least squares, optimize (according to a specified ob-
jective function) the fit of a functional description
(model) to all of the presented data. These techniques
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|| # Load stereo image pair and convert to grayscale @ f% 7’5‘% E
IU I1 = cv2.1mread('left.png', cv2.IMREAD GRAYSCALE) ;

J

I2 = cv2.1mread('right.png', cv2.IMREAD GRAYSCALE)

; |
J/ # Find the keypoints and descriptors with SIFT {
- sift = cv2.SIFT create() nl

;;"” kpl, desl = sift.detectAndCompute(I1, None) m
' kp2, des2 = sift.detectAndCompute(I2, None)
|
( # Visualize keypoints
Il _sift = cv2.drawKeypoints(I1, kpl, None,

flags=cv2.DRAW_ MATCHES FLAGS DRAW RICH KEYPOINTS)
*’ 12 sift = cv2.drawKeypoints(I2, kp2, None,

‘H

| F

j*. flags=cv2.DRAW_MATCHES FLAGS DRAW RICH KEYPOINTS)

! 11 12 sift=np.concatenate((I1 sift, [2 sift), axis=1)

| cv2amshow('Image SIFT keypoints', I1_I2_sift)

!
:




ettt A e s i -—-——-———-*-—-—-—-—-—-—___.__\
\1# Load stereo image pair and convert to grayscale !
'T1 = cv2.imread('left.png', cv2.IMREAD GRAYSCALE) |

J! [2 = cv2.1imread('right.png’, cv2.IMREAD GRAYSCALE)
#

# Find the keypoints and descriptors with SIFT
"‘ sift = cv2.SIFT create() .
' kpl, desl = sift.detectAndCompute(11, None) ":
' kp2, des2 = sift.detectAndCompute(12, None) |

| w # Visualize keypoints

T _sift = cv2.drawKeypoints(I1, kp1, None,
flags=cv2.DRAW_ MATCHES FLAGS DRAW RICH KEYPOINTYS) “_‘

! 12_sift = cv2.drawKeypoints(I12, kp2, None, |
flags=cv2.DRAW_MATCHES FLAGS DRAW_RICH KEYPOINTS) |

: I1 I2 sift = np.concatenate((I1_sift, 12 sift), axis=1)
| cv2.umshow('Image SIFT keypoints', I1 12 sift)

;

'y




'. m—- —— ———-—-—-————-—-——-——-._.__\
\1# Load stereo image pair and convert to grayscale | ‘L
{11 = cv2.imread('left.png', cv2 IMREAD GRAYSCALE)

‘12 = cv2.imread('right.png’, cv2.IMREAD GRAYSCALE)

# Find the keypoints and descriptors with SIFT
. sift = cv2.SIFT create()

| kpl, desl = sift.detectAndCompute(I1, None)
H kp2 des2 = sift.detectAndCompute(12, None)

S -

& il e e N

# Visualize keypoints

Il _sift = cv2.drawKeypoints(I1, kpl, None, -
-~ flags=cv2.DRAW_ MATCHES FLAGS DRAW RICH KEYPOINTS)
* 12 sift = cv2.drawKeypoints(I12, kp2, None, “.
". flags=cv2.DRAW_MATCHES FLAGS_DRAW_RICH KEYPOINTS)

i

; I1 I2 sift = np.concatenate((I1_sift, 12 sift), axis=1)
| cv2.umshow('Image SIFT keypoints', I1_I2_sift)

{

b
¥ 1
|




\1 # Load stereo image pair and convert to grayscale
{11 = cv2.imread('left.png', cv2 IMREAD GRAYSCALE)
i 12 = cv2.imread('right.png', cv2IMREAD GRAYSCALE)

j # Find the keypoints and descriptors with SIFT
= cv2.SIFT create()

kpl/desl = sift.detectAndCompute(I1, None)

5é %E = = sift.detectAndCompute(I12, None)

=Y ITYN
\ # visuanZ€ Keypoints

T _sift = cv2.drawKeypoints(I1, kp1, None,

-~ flags=cv2.DRAW_ MATCHES FLAGS DRAW RICH KEYPOINTS)
! 12_sift = cv2.drawKeypoints(I12, kp2, None,
"‘ flags=cv2.DRAW_ MATCHES FLAGS DRAW RICH KEYPOINTS)

i

: I1 I2 sift = np.concatenate((I1_sift, 12 sift), axis=1)
| cv2.umshow('Image SIFT keypoints', I1 12 sift)

i ;

'y




1 # Load stereo image pair and convert to grayscale
{11 = cv2.imread('left.png', cv2 IMREAD GRAYSCALE)
| 12 = cv2.1mread('right.png', cv2.IMREAD GRAYSCALE)

1ij # Find the keypoints and descriptors with SIFT
“n sift = cv2 .SIFT create()

i kpl desl = sift.detectAndCompute(I1, None)
ctAndCompute(I12, None)

.
i ﬁﬁtfﬁj_'—]z
¢ aouurizv ACY PULILLS
Il _sift = cv2.drawKeypoints(I1, kp1, None,
flags=cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS)
’ 12 sift = cv2.drawKeypoints(I12, kp2, None,

"‘ flags=cv2.DRAW_MATCHES FLAGS DRAW RICH KEYPOINTS)

., 11_12_sift = np.concatenate((I1_sift, I2_sift), axis=1)
| cv2.umshow('Image SIFT keypoints', I1 12 sift)

* \
£




'11 = cv2.imread( cv2.IMREAD GRAYSCALE)
12 = cv2.imread( cv2.IMREAD GRAYSCALE) ’

sift = cv2.SIFT create()
kpl, desl = sift.detectAndCompute(11 ) |
kp2, des2 = sift.detectAndCompute(12 ) ‘J‘

| { # Visualize keypoints
I1 sift = cv2.drawKeypoints(I1, kp1, None, '
-f flags=cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS)
/ 12_sift = cv2.drawKeypoints(12, kp2, None, .
5*. flags=cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS) 1,'

! [1 12 sift =np.concatenate((I1 _sift, I2 sift), axis=1)
T cv2.umshow('Image SIFT keypoints', I1_12_sift)

——‘-——“___._ﬁi_.___. e ———— e e i






B e

J # Match keypoints in both images ¥ ﬁf’t
E FLANN INDEX KDTREE =1 T/* )

| flann = cv2.FlannBasedMatcher(index params, {}) {
J matches = flann.knnMatch(des1, des2, k=2)

/I\\

; index_params = dict(algorithm=FLANN INDEX KDTREE, uwceo

‘* # Keep good matches: calculate distinctive image features

q.

' good, pts1, pts2 =[], 1. [] |

( for 1, (m, n) in enumerate(matches):
1f m.distance < 0.7 * n.distance:
good.append(|m])
ptsl.append(kpl[m.queryldx].pt) F
pts2.append(kp2[m.trainldx].pt)

keypoint _matches = cv2.drawMatchesKnn(I1, kpl, 12, kp2, good, None,

flags=cv2.DRAW_ MATCHES FLAGS NOT DRAW SINGLE POINTS)
cv2.imshow('Keypoint matches', keypoint matches)

b




| # Match keypoints in both images

j' FLANN INDEX KDTREE =1

t1index_params = dict(algorithm=FLANN INDEX KDTREE, trees=5)
| flann = cv2.FlannBasedMatcher(index params, {})

; matches = flann.knnMatch(des1, des2, k=2) 3

e e e s 'F—-—_—_—-—_—*__-___'«

| # Keep good matches: calculate distinctive image features .
- good, ptsl, pts2 =[], []. [] H
| 1, (m, n) in enumerate(matches): .4

m.distance < * n.distance:
good.append([m]) h
/ ptsl.append(kp1[m.queryldx].pt)
'i pts2.append(kp2[m.trainldx].pt)
. keypoint _matches = cv2.drawMatchesKnn(I1, kpl1, 12, kp2, good '|
flags=cv2.DRAW MATCHES FLAGS NOT DRAW SINGLE POINTS)

i cv2amshow('Keypoint matches', keypoint_matches)




' FLANN INDEX KDTREE =
‘index_params = dict(algorithm=FLANN_ INDEX KDTREE, trees=5)

| flann = cv2.FlannBasedMatcher(index params, {})
matches = flann.knnMatch(des1, des2, k=2)

f'“ # Keep good matches: calculate distinctive image features E
) good ptsl, pts2 =[], [] [] |
|

for 1, (m, n) in enumerate(matches):
1f m.distance < 0.7 * n.distance:

|

: good.append([m])
; ptsl.append(kp1[m.queryldx].pt)

$ pts2.append(kp2[m.trainldx].pt)

! keypoint matches = cv2.drawMatchesKnn(I1, kpl, 12, kp2, good, None,
{‘ flags=cv2.DRAW_ MATCHES FLAGS NOT DRAW SINGLE POINTS)

i cv2.imshow('Keypoint matches', keypoint matches)

"w_-—s-—--
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J # Match keypoints in both images
fu FLANN INDEX KDTREE = 1
‘index_ params = dict(algorithm=FLANN_ INDEX KDTREE, trees=5)
l{ flann = cv2.FlannBasedMatcher(index params, {})

f matches = flann.knnMatch(des1, des2, k=2)

e

j # Keep good matches: calculate distinctive image features
' good. pts1. pts2 = []. []. []

| f for 1, (m, n) in enumerate(matches):
 if m.distance < 0.7 * n.distance:

good.append([m]) |
ptsl.append(kpl[m.queryldx].pt) F
} pts2.append(kp2[m.trainldx].pt)

= e
I

t‘_"“k‘_i = —

. keypoint matches = cv2.drawMatchesKnn(I1, kp1, 12, kp2, good, None,

| flags=cv2. DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE POINTS)
¢+ cv2.amshow('Keypoint matches', keypoint matches)

b




\1 # Match keypoints in both images f
| FLANN_INDEX_KDTREE = |
* index_params = dict(algorithm=FLANN INDEX KDTREE, trees=5)

f flann = cv2.FlannBasedMatcher(index params, {})
'J” matches = flann.knnMatch(des1, des2, k=2)

| # Keep good matches: calculate distinctive image features H
1 good, ptsl, pts2 =], [], [] .

i for 1, (m, n) in enumerate(matches):
R,. 1f m.distance < 0.7 * n.distance:

—— e =

{ good.append([m])
( ptsl.append(kpl[m.queryldx].pt)
I pts2.append(kp2[m.trainldx].pt)

o PR

\ , keypoint_matches = cv2.drawMatchesKnn(I1, kp1, 12, kp2, good, None,

.‘? flags=cv2.DRAW_ MATCHES FLAGS NOT DRAW _SINGLE POINTS)‘
1 cv2.imshow('Keypoint matches', keypoint_matches)

b




e —————
| # Match keypoints in both images |
' FLANN INDEX KDTREE =

t index_params = dict(algorithm=FLANN_INDEX KDTREE, trees=5)

, flann = cv2.FlannBasedMatcher(index params, {})
{ matches = flann.knnMatch(des1, des2, k=2)

| # Keep good matches: calculate distinctive image features :
' good, ptsl, pts2 =[], [], [] H

1, (m, n) in enumerate(matches):
m.distance < * n.distance: |
good.append([m]) h

,‘ ptsl.append(kp1[m.queryldx].pt)

pts2.append(kp2[m.trainldx].pt)

! keypomt matches = cv2.drawMatchesKnn(I1, kpl, 12, kp2, good, None, |
, flags=cv2.DRAW_ MATCHES FLAGS NOT DRAW SINGLE POINTS)h
f‘% cv2.imshow('Keypoint matches', keypoint matches) ?




,_‘:‘_"

.lll.l_ls 1 o |




.———-—Ium-———"-.’ -.——-—-———--—-—-—-——-.—-_M
# Calculate the fundamental matrix for the cameras ; 
pts1 = np.float32(pts1) |
pts2 = np.float32(pts2)

fundamental matrix, inliers = cv2.findFundamentalMat(
ptsl, pts2, cv2.FM RANSAC,

i
f
|
J

r ransacReprojThreshold=0.9, confidence=0.99
)
{ # Select only 1lier points
\ pts1 = pts1[inliers.ravel() == 1] |
| pts2 = pts2[inliers.ravel() == 1] |




)# Calculate the fundamental matrix for the cameras
j ptsl = np.float32(ptsl)
?
4

pts2 = np.float32(pts2)

' fundamental matrix, inliers = cv2.findFundamentalMat(

ptsl, pts2, cv2.FM RANSAC,

\.
| ransacReprojThreshold=0.9, confidence=0.99 -h-

|

) l
o lil
| # Select only inlier points |
| ptsl = pts1[inliers.ravel() == 1]
| pts2 = pts2[inliers.ravel() == 1]




.1 # Calculate the fundamental matrix for the cameras
{ ptsl = np.float32(pts1)
j pts2 = np.float32(pts2)

'iy fundamental matrix, inliers = cv2.findFundamentalMat(
Fn ptsl, pts2, cv2.FM RANSAC,

i ransacReprojThreshold=0.9, confidence=0.99

)
| # Select only inlier points

| pts1 = pts1[inliers.ravel() == 1]
' pts2 = pts2[inliers.ravel() == ]




1 # Calculate the fundamental matrix for the cameras
! i pts1 = np.float32(ptsl)
: pts2 np.float32(pts2)

1 fundamental atr' X dnliers=cv?2. ﬁndFundamentalMat(

u
)
|

)
| # Select only inlier points

H':H ptsl = ptsl[inliers.ravel() == 1]
pts2 = pts2[inliers.ravel() == 1]




J # Calculate the fundamental matrix for the cameras
fﬁ' pts1 = np.float32(pts1)

/ ‘ pts2 = np.float32(pts2)

#

| fundamental matrix, inliers = cv2.findFundamentalMat( A
ptsl, pts2, cv2.FM_RANSAC, t

| ransacReprojThreshold=0.9, confidence=0.99 h
)I f # Select only 1nlier points ]

; ptsl = ptsl[inliers.ravel() == ] |
, pts2 pts2[inliers.ravel() == |] E




| f"'_""'"—""—'-""‘""—-'"""' -———-————-—————————-—-——_\‘
J # Stereo rectification (uncalibrated variant)
ghl w1 =1mgl.shape

‘h2, w2 = img2.shape

:. j _, H1, H2 = cv2.stereoRectifyUncalibrated(

ptsl, pts2, fundamental matrix, imgSize=(w1, hl)

| )
Ilh # Rectify the images

11 rect = cv2.warpPerspective(I1, HI, (w1, hl))
y{ [2 rect = cv2.warpPerspective(12, H2, (w2, h2))

! # Visualize rectified images
*' I1 I2 rect=np.concatenate((I1 rect, I2 rect), axis=1) '*
E cv2.imshow('Rectified images', I1 12 rect), cv2.waitKey(0) " |

)

; i i\
| )

A
1

t
8



‘J# Stereo rectification (uncalibrated variant)
i h1, wl = imgl.shape
h2, w2 = 1mg2.shape
;i _, H1, H2 = cv2.stereoRectifyUncalibrated(
i ptsl, pts2, fundamental matrix, imgSize=(w1, hl)
)
| # Rectify the images
Il _rect = cv2.warpPerspective(Il, H1, (wl, hl))
I2 _rect = cv2.warpPerspective(12, H2, (w2, h2))

# Visualize rectified images
’ / 11 12 rect =np.concatenate((I1 rect, 12 rect), axis=1)
"‘ cv2.imshow('Rectified images', I1 12 rect), cv2.waitKey(0)

i




s . —————
| # Stereo rectification (uncalibrated variant) f
thl, wl =img]l.shape

| h2, w2 = img2.shape

|, H1, H2 = cv2.stereoRectifyUncalibrated(

{ ptsl, pts2, fundamental matrix, imgSize=(w1, hl)

|
1

jl # Rectify the images

Il _rect = cv2.warpPerspective(Il, HI, (w1, hl))

U 12 rect = cv2.warpPerspective(I2, H2, (w2, h2))
1 # Visualize rectified images

* Il_IZ_rect = np.concatenate((I1 rect, 12 rect), axis=1)
cv2.imshow('Rectiﬁed images', I1 12 rect), cv2.waitKey(0)

e ——— -




|1 # Stereo rectification (uncalibrated variant)
thl, wl =img]l.shape
| h2, w2 = img2.shape
|, H1, H2 = cv2.stereoRectifyUncalibrated(

.w ptsl, pts2, fundamental matrix, imgSize=(wl, hl)
) .
| # Rectify the images |
Il _rect = cv2.warpPerspective(Il, H1, (wl, hl))
I2 _rect = cv2.warpPerspective(12, H2, (w2, h2))

# Visualize rectified images

( I1 I2 rect =np.concatenate((I1 _rect, I2 rect), axis=1)
cv2.imshow('Rectified images', I1 12 rect), cv2.waitKey(0)
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PatchmatchNet: Learned Multi-View Patchmatch Stereo

Fangjinhua Wang'  Silvano Galliani>  Christoph Vogel?  Pablo Speciale? Marc Pollefeys'?
IDepartment of Computer Science, ETH Zurich
“Microsoft Mixed Reality & Al Zurich Lab
Abstract 0.55 & o551 W Ea;’f";ft“‘!t o
_ & CVP-MVSNet
We present PatchmatchNet, a novel and learnable cas- Eﬂjﬂ 0 : ;a;t\,;':ir .
cade formulation of Patchmatch for high-resolution multi- E e oas. @ Mvshet
view stereo. With high computation speed and low memory T Py ® Ous ®
requirement, PatchmatchNet can process higher resolution g 0.40 0.40
imagery and is more suited to run on resource limited de- e = e =
vices than competitors that employ 3D cost volume regular- 0-35 . 0-35 v .
ization. For the first time we introduce an iterative multi- 2 U v, ‘G‘;} — LR “-ﬂfr;_?t?r:fg }1-25 ol

scale Patchmatch in an end-to-end trainable architecture
and improve the Patchmatch core algorithm with a novel
and learned adaptive propagation and evaluation scheme
for each iteration. Extensive experiments show a very com-
petitive performance and generalization for our method on
DTU, Tanks & Temples and ETH3D, but at a significantly
higher efficiency than all existing top-performing models:
at least two and a half times faster than state-of-the-art
methods with twice less memory usage. Code is avail-
able af httos://aitrhubh.com/FanaiinhuaWana/

Figure 1: Comparison with state-of-the-art learning-based
multi-view stereo methods [7,17,41,42,43,44]on DTU [1].
Relationship between error, GPU memory and run-time
with image size 1152 x 864.

learning-based MVS methods [6, 28, 39,42] construct a 3D
cost volume, regularize it with a 3D CNN and regress the
depth. As 3D CNNs are usually time and memory consum-
ing, some methods [39, 42] down-sample the input during
feature extraction and compute both, the cost volume and

CVPR, 2021
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MVSNet: Depth Inference for
Unstructured Multi-view Stereo

Yao Yaol *[0000—0001—-9866—4291]
Shiwei Lll *[0000—0003—0712—0059]

i 1%[0000—0001 —6946 —2826
, Zixin Luo [ ],
, Tian Fang?2[0000-0002—5871-3455]
1[0000—0001—8148—1771]

, and
Long Quan

! The Hong Kong University of Science and Technology.
{yyaoag, zluoag, slibc, quan}@cse.ust.hk
2 Shenzhen Zhuke Innovation Technology (Altizure),
fangtian@altizure.com

Abstract. We present an end-to-end deep learning architecture for depth
map inference from multi-view images. In the network, we first extract
deep visual image features, and then build the 3D cost volume upon
the reference camera frustum via the differentiable homography warp-
ing. Next, we apply 3D convolutions to regularize and regress the initial
depth map, which is then refined with the reference image to generate
the final output. Our framework flexibly adapts arbitrary N-view inputs
using a variance-based cost metric that maps multiple features into one
cost feature. The proposed MVSNet is demonstrated on the large-scale
indoor DTU dataset. With simple post-processing, our method not only
significantly outperforms previous state-of-the-arts, but also is several
times faster in runtime. We also evaluate MVSNet on the complex out-
door Tanks and Temples dataset, where our method ranks first before
April 18, 2018 without any fine-tuning, showing the strong generalization
ability of MVSNet.

Keywords: Multi-view Stereo, Depth Map, Deep Learning

ECCV, 2018
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Stereo Evaluation - Datasets * Code * Submit

Daniel Scharstein * Richard Szeliski

Welcome to the Middlebury Stereo Vision Page, formerly located at www.middlebury.edu/stereo. This website accompanies
our taxonomy and comparison of two-frame stereo correspondence algorithms [1], It contains:

An on-line evaluation of current algorithms

Many stereo datasets with ground-truth disparities

Our stereo correspondence software

An on-line submission script that allows you to evaluate your stereo algorithm in our framework

How to cite the materials on this website:

We grant permission to use and publish all images and numerical results on this website. If you report performance results,
we request that you cite our paper [1]. Instructions on how to cite our datasets are listed on the datasets page. If you want
to cite this website, please use the URL "vision.middlebury.edu/stereo/".

References:
[1] D. Scharstein and R. Szeliski. A {2 ) J
hbmaﬂonal Joumal o! Camputar Vlslon, 47(1/23) 7-42 Apmuune 2002.
MSR-TR-2 81, November 2001.

Other online stereo benchmarks and datasets:

e KITTI vision benchmark
» HCI robust vision challenge

Support for this work was provided In part by NSF CAREER grant 9984485 and NSF grant 11S-0413188. Any opinions, findings, and conclusions of recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.
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Stereo Matching by Training a Convolutional Neural
Network to Compare Image Patches

Jure Zbontar* JURE.ZBONTAR@FRI.UNI-LJ.SI
Faculty of Computer and Information Science

University of Ljubljana

Veéna pot 113, SI-1001 Ljubljana, Slovenia

Yann LeCunf YANN@CS.NYU.EDU
Courant Institute of Mathematical Sciences

New York University
715 Broadway, New York, NY 10003, USA

Editor: Zhuowen Tu

Abstract

We present a method for extracting depth information from a rectified image pair. Our
approach focuses on the first stage of many stereo algorithms: the matching cost compu-
tation. We approach the problem by learning a similarity measure on small image patches
using a convolutional neural network. Training is carried out in a supervised manner by
constructing a binary classification data set with examples of similar and dissimilar pairs
of patches, We examine two network architectures for this task: one tuned for speed, the
other for accuracy. The output of the convolutional neural network is used to initialize the

Journal of Machine Learning Research, 2016

uaua dels,

Keywords: stereo, matching cost, similarity learning, supervised learning, convolutional
neural networks

1. Introduction




A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation

Nikolaus Mayer*!, Eddy Ilg**, Philip Hiusser*?, Philipp Fischer*!1

'University of Freiburg 2Technical University of Munich
{mayern, ilg, fischer}@cs.uni-freiburg.de ’haeusser@cs.tum.edu
Daniel Cremers Alexey Dosovitskiy, Thomas Brox
Technical University of Munich University of Freiburg
cremers@tum.de {dosovits, brox}@cs.uni-freiburg.de
Abstract

Recent work has shown that optical flow estimation can
be formulated as a supervised learning task and can be suc-
cessfully solved with convolutional networks. Training of
the so-called FlowNet was enabled by a large synthetically
generated dataset. The present paper extends the concept
of optical flow estimation via convolutional networks to dis-
parity and scene flow estimation. To this end, we propose
three synthetic stereo video datasets with sufficient realism,
variation, and size to successfully train large networks. Our
datasets are the first large-scale datasets to enable training
and evaluation of scene flow methods. Besides the datasets,

PaRhe

[ S 7 B A TRt R o Sl R T S DT Bt il b R et UCIISC ZIOUIU U UL LOL opucat Jlow, aisparuy ana aisparuy cnange,
a convolutional network. as well as other data such as object segmentation.

1. Introduction with regard to both efficiency and accuracy. One reason for




M. Sizintsev, et al.
"GPU Accelerated Realtime Stereo for Augmented Reality’; 3DPVT, 2010
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